【Python时序预测系列】XGBoost进行单变量时序预测(案例+源码)
wptr33 2025-03-25 18:07 24 浏览
这是我的第392篇原创文章。
一、引言
XGBoost 是一种高效的梯度提升树(Gradient Boosting Decision Tree, GBDT)算法。尽管 XGBoost 主要用于监督学习任务(如分类和回归),但通过适当的数据预处理,它也可以用于时间序列预测(Time Series Forecasting)。本文通过一个具体的案例逐步讲解XGBoost模型用于单变量时序数据预测。
二、实现过程
2.1 读取时间序列数据
代码:
data = pd.read_csv('data.csv')
data['Month'] = pd.to_datetime(data['Month'])
df = data
sns.set(font_scale=1.2)
plt.rc('font', family=['Times New Roman', 'SimSun'], size=12)
plt.figure()
plt.plot(df['Month'], df['Passengers'], color='b', alpha=0.6, label='Original Time Series')
plt.title('Original Time Series', fontsize=12)
plt.legend()
plt.tight_layout()
plt.show()
结果:
2.2 数据格式转换
滑动窗口法转换为监督学习格式,代码 :
df_lagged = create_lag_features(df, lags=10)
X = df_lagged.drop(columns=['Passengers'])
y = df_lagged['Passengers']
2.3 数据集划分
代码:
# 3. 数据集拆分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
结果:
2.4 模型训练
代码:
model = XGBRegressor(objective='reg:squarederror', n_estimators=200, learning_rate=0.1, max_depth=5)
model.fit(X_train, y_train)
2.5 模型预测
代码:
y_pred = model.predict(X_test)
2.6 模型评估
代码
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse:.4f}')
结果::
可视化:
plt.figure()
plt.plot(y_test.values, label='Actual', color='g')
plt.plot(y_pred, label='Predicted', color='r', linestyle='dashed')
plt.title('Actual vs Predicted', fontsize=12)
plt.legend()
plt.tight_layout()
plt.show()
结果:
查看预测误差的分布情况:
plt.figure()
sns.histplot(y_test - y_pred, bins=30, kde=True, color='purple')
plt.title('Error Distribution', fontsize=12)
plt.tight_layout()
plt.show()
结果:
2.7 特征重要性分析
分析哪些滞后变量对预测最重要,代码:
plt.figure()
feature_importance = model.feature_importances_
sns.barplot(x=X.columns, y=feature_importance, palette='viridis')
plt.title('Feature Importance', fontsize=12)
plt.xticks(X.columns, rotation=45)
plt.tight_layout()
plt.show()
结果:
2.8 参数调优
代码:
grid_params = {
'n_estimators': [100, 200, 500],
'max_depth': [3, 5, 7],
'learning_rate': [0.01, 0.1, 0.2]
}
grid_search = GridSearchCV(XGBRegressor(objective='reg:squarederror'), grid_params, cv=3, scoring='neg_mean_squared_error')
grid_search.fit(X_train, y_train)
print(f'Best Parameters: {grid_search.best_params_}')
结果:
作者简介: 读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。关注gzh:数据杂坛,获取数据和源码学习更多内容。
原文链接:
相关推荐
- 什么是Java中的继承?如何实现继承?
-
什么是继承?...
- Java 继承与多态:从基础到实战的深度解析
-
在面向对象编程(OOP)的三大支柱中,继承与多态是构建灵活、可复用代码的核心。无论是日常开发还是框架设计,这两个概念都扮演着至关重要的角色。本文将从基础概念出发,结合实例与图解,带你彻底搞懂Java...
- Java基础教程:Java继承概述_java的继承
-
继承概述假如我们要定义如下类:学生类,老师类和工人类,分析如下。学生类属性:姓名,年龄行为:吃饭,睡觉老师类属性:姓名,年龄,薪水行为:吃饭,睡觉,教书班主任属性:姓名,年龄,薪水行为:吃饭,睡觉,管...
- java4个技巧:从继承和覆盖,到最终的类和方法
-
日复一日,我们编写的大多数Java只使用了该语言全套功能的一小部分。我们实例化的每个流以及我们在实例变量前面加上的每个@Autowired注解都足以完成我们的大部分目标。然而,有些时候,我们必须求助于...
- java:举例说明继承的概念_java继承的理解
-
在现实生活中,继承一般指的是子女继承父辈的财产。在程序中,继承描述的是事物之间的所属关系,通过继承可以使多种事物之间形成一种关系体系。例如猫和狗都属于动物,程序中便可以描述为猫和狗继承自动物,同理,...
- 从零开始构建一款开源的 Vibe Coding 产品 Week1Day4:业界调研之 Agent 横向对比
-
前情回顾前面两天我们重点调研了了一下Cursor的原理和Cursor中一个关键的工具edit_file的实现,但是其他CodingAgent也需要稍微摸一下底,看看有没有优秀之处,下...
- 学会这几个插件,让你的Notepad++使用起来更丝滑
-
搞程序开发的小伙伴相信对Notepad++都不会陌生,是一个占用空间少、打开启动快的文件编辑器,很多程序员喜欢使用Notepad++进行纯文本编辑或者脚本开发,但是Notepad++的功能绝不止于此,...
- 将 node_modules 目录放入 Git 仓库的优点
-
推荐一篇文章Whyyoushouldcheck-inyournodedependencies[1]...
- 再度加码AI编程,腾讯发布AI CLI并宣布CodeBuddy IDE开启公测
-
“再熬一年,90%的程序员可能再也用不着写for循环。”凌晨两点半,王工还在公司敲键盘。他手里那份需求文档写了足足六页,产品经理反复改了三次。放在过去,光数据库建表、接口对接、单元测试就得写两三天。现...
- git 如何查看stash的内容_git查看ssh key
-
1.查看Stash列表首先,使用gitstashlist查看所有已保存的stash:...
- 6万星+ Git命令懒人必备!lazygit 终端UI神器,效率翻倍超顺手!
-
项目概览lazygit是一个基于终端的Git命令可视化工具,通过简易的TUI(文本用户界面)提升Git操作效率。开发者无需记忆复杂命令,即可完成分支管理、提交、合并等操作。...
- 《Gemini CLI 实战系列》(一)Gemini CLI 入门:AI 上命令行的第一步
-
谷歌的Gemini模型最近热度很高,而它的...
- deepin IDE新版发布:支持玲珑构建、增强AI智能化
-
IT之家8月7日消息,深度操作系统官方公众号昨日(8月6日)发布博文,更新推出新版deepin集成开发环境(IDE),重点支持玲珑构建。支持玲珑构建deepinIDE在本次重磅更...
- 狂揽82.7k的star,这款开源可视化神器,轻松创建流程图和图表
-
再不用Mermaid,你的技术文档可能已经在悄悄“腐烂”——图表版本对不上、同事改完没同步、评审会上被一句“这图哪来的”问得哑口无言。这不是危言耸听。GitHub2025年开发者报告显示,63%的新仓...
- 《Gemini CLI 实战系列》(五)打造专属命令行工具箱
-
在前几篇文章中,我们介绍了GeminiCLI的基础用法、效率提升、文件处理和与外部工具结合。今天我们进入第五篇...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
程序员的开源月刊《HelloGitHub》第 71 期
-
详细介绍一下Redis的Watch机制,可以利用Watch机制来做什么?
-
如何将AI助手接入微信(打开ai手机助手)
-
SparkSQL——DataFrame的创建与使用
-
假如有100W个用户抢一张票,除了负载均衡办法,怎么支持高并发?
-
Java面试必考问题:什么是乐观锁与悲观锁
-
redission YYDS spring boot redission 使用
-
如何利用Redis进行事务处理呢? 如何利用redis进行事务处理呢英文
-
一文带你了解Redis与Memcached? redis与memcached的区别
-
- 最近发表
-
- 什么是Java中的继承?如何实现继承?
- Java 继承与多态:从基础到实战的深度解析
- Java基础教程:Java继承概述_java的继承
- java4个技巧:从继承和覆盖,到最终的类和方法
- java:举例说明继承的概念_java继承的理解
- 从零开始构建一款开源的 Vibe Coding 产品 Week1Day4:业界调研之 Agent 横向对比
- 学会这几个插件,让你的Notepad++使用起来更丝滑
- 将 node_modules 目录放入 Git 仓库的优点
- 再度加码AI编程,腾讯发布AI CLI并宣布CodeBuddy IDE开启公测
- git 如何查看stash的内容_git查看ssh key
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)