百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

【Python时序预测系列】XGBoost进行单变量时序预测(案例+源码)

wptr33 2025-03-25 18:07 24 浏览

这是我的第392篇原创文章。

一、引言

XGBoost 是一种高效的梯度提升树(Gradient Boosting Decision Tree, GBDT)算法。尽管 XGBoost 主要用于监督学习任务(如分类和回归),但通过适当的数据预处理,它也可以用于时间序列预测(Time Series Forecasting)。本文通过一个具体的案例逐步讲解XGBoost模型用于单变量时序数据预测。

二、实现过程

2.1 读取时间序列数据

代码:

data = pd.read_csv('data.csv')
data['Month'] = pd.to_datetime(data['Month'])
df = data
sns.set(font_scale=1.2)
plt.rc('font', family=['Times New Roman', 'SimSun'], size=12)
plt.figure()
plt.plot(df['Month'], df['Passengers'], color='b', alpha=0.6, label='Original Time Series')
plt.title('Original Time Series', fontsize=12)
plt.legend()
plt.tight_layout()
plt.show()

结果:

2.2 数据格式转换

滑动窗口法转换为监督学习格式,代码 :

df_lagged = create_lag_features(df, lags=10)
X = df_lagged.drop(columns=['Passengers'])
y = df_lagged['Passengers']

2.3 数据集划分

代码:

# 3. 数据集拆分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

结果:


2.4 模型训练

代码:

model = XGBRegressor(objective='reg:squarederror', n_estimators=200, learning_rate=0.1, max_depth=5)
model.fit(X_train, y_train)

2.5 模型预测

代码:

y_pred = model.predict(X_test)

2.6 模型评估

代码

mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse:.4f}')

结果::

可视化:

plt.figure()
plt.plot(y_test.values, label='Actual', color='g')
plt.plot(y_pred, label='Predicted', color='r', linestyle='dashed')
plt.title('Actual vs Predicted', fontsize=12)
plt.legend()
plt.tight_layout()
plt.show()

结果:

查看预测误差的分布情况:

plt.figure()
sns.histplot(y_test - y_pred, bins=30, kde=True, color='purple')
plt.title('Error Distribution', fontsize=12)
plt.tight_layout()
plt.show()

结果:

2.7 特征重要性分析

分析哪些滞后变量对预测最重要,代码:

plt.figure()
feature_importance = model.feature_importances_
sns.barplot(x=X.columns, y=feature_importance, palette='viridis')
plt.title('Feature Importance', fontsize=12)
plt.xticks(X.columns, rotation=45)
plt.tight_layout()
plt.show()

结果:

2.8 参数调优

代码:

grid_params = {
    'n_estimators': [100, 200, 500],
    'max_depth': [3, 5, 7],
    'learning_rate': [0.01, 0.1, 0.2]
}
grid_search = GridSearchCV(XGBRegressor(objective='reg:squarederror'), grid_params, cv=3, scoring='neg_mean_squared_error')
grid_search.fit(X_train, y_train)
print(f'Best Parameters: {grid_search.best_params_}')

结果:

作者简介: 读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。关注gzh:数据杂坛,获取数据和源码学习更多内容。

原文链接:

【Python时序预测系列】建立XGBoost模型进行单变量时序预测(案例+源码)

相关推荐

什么是Java中的继承?如何实现继承?

什么是继承?...

Java 继承与多态:从基础到实战的深度解析

在面向对象编程(OOP)的三大支柱中,继承与多态是构建灵活、可复用代码的核心。无论是日常开发还是框架设计,这两个概念都扮演着至关重要的角色。本文将从基础概念出发,结合实例与图解,带你彻底搞懂Java...

Java基础教程:Java继承概述_java的继承

继承概述假如我们要定义如下类:学生类,老师类和工人类,分析如下。学生类属性:姓名,年龄行为:吃饭,睡觉老师类属性:姓名,年龄,薪水行为:吃饭,睡觉,教书班主任属性:姓名,年龄,薪水行为:吃饭,睡觉,管...

java4个技巧:从继承和覆盖,到最终的类和方法

日复一日,我们编写的大多数Java只使用了该语言全套功能的一小部分。我们实例化的每个流以及我们在实例变量前面加上的每个@Autowired注解都足以完成我们的大部分目标。然而,有些时候,我们必须求助于...

java:举例说明继承的概念_java继承的理解

在现实生活中,继承一般指的是子女继承父辈的财产。在程序中,继承描述的是事物之间的所属关系,通过继承可以使多种事物之间形成一种关系体系。例如猫和狗都属于动物,程序中便可以描述为猫和狗继承自动物,同理,...

从零开始构建一款开源的 Vibe Coding 产品 Week1Day4:业界调研之 Agent 横向对比

前情回顾前面两天我们重点调研了了一下Cursor的原理和Cursor中一个关键的工具edit_file的实现,但是其他CodingAgent也需要稍微摸一下底,看看有没有优秀之处,下...

学会这几个插件,让你的Notepad++使用起来更丝滑

搞程序开发的小伙伴相信对Notepad++都不会陌生,是一个占用空间少、打开启动快的文件编辑器,很多程序员喜欢使用Notepad++进行纯文本编辑或者脚本开发,但是Notepad++的功能绝不止于此,...

将 node_modules 目录放入 Git 仓库的优点

推荐一篇文章Whyyoushouldcheck-inyournodedependencies[1]...

再度加码AI编程,腾讯发布AI CLI并宣布CodeBuddy IDE开启公测

“再熬一年,90%的程序员可能再也用不着写for循环。”凌晨两点半,王工还在公司敲键盘。他手里那份需求文档写了足足六页,产品经理反复改了三次。放在过去,光数据库建表、接口对接、单元测试就得写两三天。现...

git 如何查看stash的内容_git查看ssh key

1.查看Stash列表首先,使用gitstashlist查看所有已保存的stash:...

6万星+ Git命令懒人必备!lazygit 终端UI神器,效率翻倍超顺手!

项目概览lazygit是一个基于终端的Git命令可视化工具,通过简易的TUI(文本用户界面)提升Git操作效率。开发者无需记忆复杂命令,即可完成分支管理、提交、合并等操作。...

《Gemini CLI 实战系列》(一)Gemini CLI 入门:AI 上命令行的第一步

谷歌的Gemini模型最近热度很高,而它的...

deepin IDE新版发布:支持玲珑构建、增强AI智能化

IT之家8月7日消息,深度操作系统官方公众号昨日(8月6日)发布博文,更新推出新版deepin集成开发环境(IDE),重点支持玲珑构建。支持玲珑构建deepinIDE在本次重磅更...

狂揽82.7k的star,这款开源可视化神器,轻松创建流程图和图表

再不用Mermaid,你的技术文档可能已经在悄悄“腐烂”——图表版本对不上、同事改完没同步、评审会上被一句“这图哪来的”问得哑口无言。这不是危言耸听。GitHub2025年开发者报告显示,63%的新仓...

《Gemini CLI 实战系列》(五)打造专属命令行工具箱

在前几篇文章中,我们介绍了GeminiCLI的基础用法、效率提升、文件处理和与外部工具结合。今天我们进入第五篇...