推荐收藏!10个相见恨晚的Pandas函数,太好用了
wptr33 2024-11-23 23:31 10 浏览
Pandas是Python最主要的数据分析库之一,它提供了大量数据结构和函数,能快速对数据进行处理和分析。
Pandas函数有很多,但在处理和分析数据的过程中,有的函数使用频率会更高一些。本篇就分享10个使用频率非常高的Pandas函数。
assign
assign直接向DataFrame对象添加新的一列,可以创建常数列、指定序列数据以及由已知列通过一定计算产生。
import numpy as np
import pandas as pd
data = {'A':[12,13,14,15],'B':[22,23,24,25]}
df = pd.DataFrame(data)
df
df.assign(C=[1,2,3,4]) #指定序列数据
df.assign(C=df.A+df.B) #根据已知列数据计算
eval
eval执行类似SQL语法中的计算,对已知列执行一定的计算时可用eval完成适用于数据量大的时候,效率会非常高。
import numpy as np
import pandas as pd
data = {'A':[12,13,14,15],'B':[22,23,24,25]}
df = pd.DataFrame(data)
df
df.eval('C=A+B') #根据已知列数据计算
add = pd.Series([1,2,3,4])
df.eval('C=A+@add') #通过@符号使用Python的局部变量,@符号表示其后紧随的是一个变量名称而不是列名称
query
query类似于SQL中where关键字的语法逻辑,按照DataFrame中某列的规则进行过滤操作,可以说是一个使用最频繁的数据筛选函数了。
import numpy as np
import pandas as pd
data = {'A':[12,13,14,15],'B':[22,23,24,25]}
df = pd.DataFrame(data)
df
df.query('A==15') #查询A列数值为5的行
df.query('A<15') #查询A列数值小于5的行
apply
apply函数本身不处理数据,而是作为处理数据的调度器。当我们使用for循环遍历DataFrame或Series,数据量大的话会非常慢。而用apply函数会非常快,它自动根据function遍历每一个数据,然后返回一个数据结构为Series的结果。
import pandas as pd
df = pd.DataFrame({'A':['bob','sos','bob','sos','bob','sos','bob','bob'],
'B':['one','one','two','three','two','two','one','three'],
'C':[3,1,4,1,5,9,2,6],
'D':[1,2,3,4,5,6,7,8]})
grouped = df.groupby('A')
for name,group in grouped: #用for遍历
print(name)
print(group)
d = grouped.apply(lambda x:x.describe()) #用apply函数
print(d)
insert
insert函数可以在指定位置插入一列数据。
import numpy as np
import pandas as pd
data = {'A':[12,13,14,15],'B':[22,23,24,25]}
df = pd.DataFrame(data)
df
add = pd.Series([1, 2, 3, 4])
df.insert(1, 'X', add) #插入列
print(df)
sample
当我们只需要DataFrame中的一部分时,就可以用sample函数从DataFrame中随机选取若干个行或列。
import numpy as np
import pandas as pd
data = {'A':[12,13,14,15],'B':[22,23,24,25]}
df = pd.DataFrame(data)
df
df.sample(2) #随机抽取2行
df.sample(frac=0.8) #随机抽取数据的80%
explode
当DataFrame中某一行其中一个元素包含多个同类型数据时,就可以用explode函数将一行数据展开成多行,只要一行代码,非常方便。
import numpy as np
import pandas as pd
data = {'A':[12,13,14,15],'B':[[21,22],23,24,[25,26,27]]}
df = pd.DataFrame(data)
df
df.explode('B') #将B列中有多个元素的数据拆分成多行
nunique
nunique函数用于计算行或列上唯一值的数量,即去重后计数。这个函数在实际的数据分析中,非常实用。
import numpy as np
import pandas as pd
data = {'name':['A','B','C','D','A','B'],'age':[21,22,23,23,21,22]}
df = pd.DataFrame(data)
df
df.name.nunique() #对name列进行唯一值计数 结果为:4
replace
replace函数是用来替换DataFrame中的值,赋以新的值。
import numpy as np
import pandas as pd
data = {'name':['A','B','C','D','A','B'],'age':[21,22,23,23,21,22]}
df = pd.DataFrame(data)
df
df.replace(['A','B'],['E','F'],inplace=True) #如果没有inplace=True的话,原数据不会改变
df
melt
melt函数是pivot函数的逆转操作函数,用于将宽表变成窄表,即将列名转换为列数据,重构DataFrame。这个操作我们在做数据分析时经常需要用到。
import numpy as np
import pandas as pd
data = {'city':['A','B','C','D'],
'2018data':[22,33,44,55],
'2019data':[12,34,67,89],
'2020data':[80,90,100,110],
'2021data':[120,132,144,178]}
df = pd.DataFrame(data)
df
pd.melt(df,id_vars=['city'],value_vars=['2018data','2019data','2020data','2021data'])
以上所说的10个Pandas函数,你最需要哪一个呢?或者还有其他想要实现的功能,可以评论区说给我听哦,下一次说不定就有相关的干货啦!
码代码不易,帮忙留下一个小反馈吧~~
- 上一篇:SQL中的正则表达式
- 下一篇:ORACLE数据库SQL缓存自动智能清理
相关推荐
- 【推荐】一款开源免费、美观实用的后台管理系统模版
-
如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!项目介绍...
- Android架构组件-App架构指南,你还不收藏嘛
-
本指南适用于那些已经拥有开发Android应用基础知识的开发人员,现在想了解能够开发出更加健壮、优质的应用程序架构。首先需要说明的是:AndroidArchitectureComponents翻...
- 高德地图经纬度坐标批量拾取(高德地图批量查询经纬度)
-
使用方法在桌面上新建一个index.txt文件,把下面的代码复制进去保存,再把文件名改成index.html保存,双击运行打开即可...
- flutter系列之:UI layout简介(flutter ui设计)
-
简介对于一个前端框架来说,除了各个组件之外,最重要的就是将这些组件进行连接的布局了。布局的英文名叫做layout,就是用来描述如何将组件进行摆放的一个约束。...
- Android开发基础入门(一):UI与基础控件
-
Android基础入门前言:...
- iOS的布局体系-流式布局MyFlowLayout
-
iOS布局体系的概览在我的CSDN博客中的几篇文章分别介绍MyLayout布局体系中的视图从一个方向依次排列的线性布局(MyLinearLayout)、视图层叠且停靠于父布局视图某个位置的框架布局(M...
- TDesign企业级开源设计系统越发成熟稳定,支持 Vue3 / 小程序
-
TDesing发展越来越好了,出了好几套组件库,很成熟稳定了,新项目完全可以考虑使用。...
- WinForm实现窗体自适应缩放(winform窗口缩放)
-
众所周知,...
- winform项目——仿QQ即时通讯程序03:搭建登录界面
-
上两篇文章已经对CIM仿QQ即时通讯项目进行了需求分析和数据库设计。winform项目——仿QQ即时通讯程序01:原理及项目分析...
- App自动化测试|原生app元素定位方法
-
元素定位方法介绍及应用Appium方法定位原生app元素...
- 61.C# TableLayoutPanel控件(c# tabcontrol)
-
摘要TableLayoutPanel在网格中排列内容,提供类似于HTML元素的功能。TableLayoutPanel控件允许你将控件放在网格布局中,而无需精确指定每个控件的位置。其单元格...
- 12个python数据处理常用内置函数(python 的内置函数)
-
在python数据分析中,经常需要对字符串进行各种处理,例如拼接字符串、检索字符串等。下面我将对python中常用的内置字符串操作函数进行介绍。1.计算字符串的长度-len()函数str1='我爱py...
- 如何用Python程序将几十个PDF文件合并成一个PDF?其实只要这四步
-
假定你有一个很无聊的任务,需要将几十个PDF文件合并成一个PDF文件。每一个文件都有一个封面作为第一页,但你不希望合并后的文件中重复出现这些封面。即使有许多免费的程序可以合并PDF,很多也只是简单的将...
- Python入门知识点总结,Python三大数据类型、数据结构、控制流
-
Python基础的重要性不言而喻,是每一个入门Python学习者所必备的知识点,作为Python入门,这部分知识点显得很庞杂,内容分支很多,大部分同学在刚刚学习时一头雾水。...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
面试官:git pull是哪两个指令的组合?
-
git pull命令使用实例 git pull--rebase
-
git 执行pull错误如何撤销 git pull fail
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mysql max (33)
- vba instr (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)