Chainer-GAN库发布,利用Chainer实现多种GAN算法及特征匹配去噪
wptr33 2025-05-24 17:32 4 浏览
原文来源:GitHub、Arxiv
「机器人圈」编译:嗯~阿童木呀、BaymaxZ
Chainer是一个基于Python的深度学习框架。它基于动态计算图以及面向对象的高级API,以构建并训练神经网络,提供自动微分API。它还支持CUDA / cuDNN使用CuPy进行高性能训练。
Chainer-GAN库汇集了当前最高水准的基于Chainer实现的GAN算法;
这些代码已在Cifar-10数据集中,使用inceptionscore进行过评估;
请注意,代码在基于原论文的基础上做了些许修改。
如何使用?
首先要阅读安装要求:
pip install -r requirements.txt
此实现已通过以下版本进行测试。
python 3.5.2
从
https://github.com/hvy/chainer-inception-score中可获得inception score模块,下文将进行详细解读。
git submodule update -i
下载inception模型。
cd common/inception
你可以使用train.py开始进行训练。
python train.py --gpu 0 --algorithm dcgan --out result_dcgan
请参阅example.sh来训练其他算法。
定量评估
Inception scores是通过对5000个样本进行10次平均评估得到的。
FID是通过对5000个训练数据集和10000个生成样本进行计算的。
生成的图像
WGAN-GP
DFM
Cramer GAN
DRGAN
DCGAN
Minibatch discrimination
BEGAN
Inception Score
Inception score模块的Chainer实现发布于《训练生成对抗网络的技术改进》(ImprovedTechniques for Training GANs)这篇论文中。代码源自OpenAI的官方开源代码(
https://github.com/openai/improved-gan)。
Inception Score是OpenAI的Tim Salimans、GANs之父IanGoodfellow等人2016年在上述论文中提出的一种方法,使用预训练的分类器网络和采样图像,评估诸如VAE和GAN之类的生成式模型。
这正是基于以下事实:良好的样本(图像看起来像来自真实数据分布的图像)预计会产生:
低熵p(y|x),即高预测置信度
高熵p(y),即高度变化的预测
其中x是图像,p(y|x)是预先训练的Inception网络给出的x的推断类标签概率,p(y)是所有图像上的边际分布。
Inception Score的定义为exp(E_x[KL(p(y|x)|| p(y))])
用法
下载预先训练好的TensorFlow模型并创建一个名为inception_score.model的Chainer副本。
python download.py --outfile inception_score.model
加载预先训练的Chainer模型,并计算包括训练图像和测试图像在内的CIFAR-10数据集的inception score。为了限制图像的数量,请使用--samples 选项。
python example.py --model inception_score.model
...
在Python中的使用示例
import numpy as npfrom chainer import serializers, datasetsfrom inception_score import Inception, inception_score
注意
从inception score的得分情况来看,该实现相较于原来的基于CIFAR-10,使用双线性插值从(32,32)到(299,299)上采样的分数要高得多。
《训练生成对抗网络的技术改进》
Inception score模块的Chainer实现发布于《训练生成对抗网络的技术改进》这篇论文中,科研人员提出了将应用于生成对抗网络(GAN)框架的各种新的架构特征和训练程序。他们专注于GAN的两个应用:半监督学习,以及人类视觉逼真意义上的图像生成。与大多数生成模型的工作不同,其主要目标不是训练一个分配高相似性以测试数据的模型,也不要求模型能够在不使用任何标签的情况下进行学习。
使用这些新技术后,科研人员在MNIST、CIFAR-10和SVHN的半监督分类中获得了可喜成果。所产生的图像具有已通过视觉图灵测试证实的高质量:该模型可以生成人类无法从实际数据中区分的MNIST样本,以及生成人为错误率为21.3%的CIFAR-10样本。我们还以前所未有的分辨率呈现除出了ImageNet样本,并显示该方法使模型能够学习到ImageNet等级的可识别特征。
在该论文中,科研人员推出了几种旨在鼓励GAN融合的技术,这些技术是从对非收敛问题的理解中获得灵感的。这使得半监督学习实现性能的提升和样本生成的改进。
更多信息可点击链接获取完整论文(
https://arxiv.org/pdf/1606.03498.pdf)
开源代码获取:
https://github.com/pfnet-research/chainer-gan-lib/blob/master/README.md
相关推荐
- 用Java实现RAG的3大核心模块与7个必知细节
-
一、真实场景驱动:某制造企业的知识管理之痛某汽车零部件企业有超过20万份技术文档(PDF/HTML/Word),工程师每天平均花费2小时查找资料。我们为其构建的Java版RAG系统,将查询耗时缩短至1...
- 在 C# .NET 中从 PDF 中提取表数据
-
概述:...
- 【分享】教你如何使用 Java 读取 Excel、docx、pdf 和 txt 文件
-
在Java开发中,我们经常需要读取不同类型的文件,包括Excel表格文件、"doc"和"docx"文档文件、PDF文件以及纯文本文件。其中最常用的是A...
- Spring AI 模块架构与功能解析
-
SpringAI是Spring生态系统中的一个新兴模块,专注于简化人工智能和机器学习技术在Spring应用程序中的集成。本文将详细介绍SpringAI的核心组件、功能模块及其之间的关...
- 告别付费!一站式服务,PDF多功能工具!
-
大家好,我是Java陈序员。今天,给大家介绍一个PDF多功能在线操作工具,完全免费开源!...
- 本地PDF操作神器:永久告别盗版和破解,再也不用担心安全问题
-
前言PDF(便携式文档格式)目前已经成为了文档交换和存储的标准。然而,找到一个功能全面、安全可靠、且完全本地化的PDF处理工具并不容易。...
- Python rembg 库去除图片背景
-
rembg是一个强大的Python库,用于自动去除图片背景。它基于深度学习模型(如U^2-Net),能够高效地将前景物体从背景中分离,生成透明背景的PNG图像。本教程将带你从安装到实际应用...
- 31个必备的python字符串方法,建议收藏
-
字符串是Python中基本的数据类型,几乎在每个Python程序中都会使用到它。...
- python学习day1——输出格式化
-
print一般在控制台中我们用print进行输出,默认情况下,使用格式为:print(*objects,sep='',end='\n')第一个参数是我们要在控制台...
- 一张图认识Python(附基本语法总结)
-
一张图认识Python(附基本语法总结)一张图带你了解Python,更快入门,一张图认识Python(附基本语法总结)Python基础语法总结:1.Python标识符在Python里,标识符有字...
- 学习编程第188天 python编程 字典格式化
-
今天学习的是刘金玉老师零基础Python教程第84期,主要内容是python字典格式化。...
- Python基础数据类型转换
-
Python中的基础数据类型转换可以分为隐式转换和显示转换。隐式转换是python解释器自动转换,显示转换是通过内置函数实现。无论哪种方式进行的转换,均为转换为对应类型的数据,而非改变原数据的类型。...
- python之json基本操作
-
1.概述JSON(JavaScriptObjectNotation)是一种轻量级的数据交换格式,它具有简洁、清晰的层次结构,易于阅读和编写,还可以有效的提升网络传输效率。Python标准库的...
- Python之迭代器及其用法
-
前面章节中,已经对列表(list)、元组(tuple)、字典(dict)、集合(set)这些序列式容器做了详细的介绍。值得一提的是,这些序列式容器有一个共同的特性,它们都支持使用for循环遍历存储...
- 从初始化一个现代 python项目学习到的东西
-
uv我准备用uv初始化一个python项目环境我用的是苹果笔记本MacBookPro,具体的操作系统及硬件参数如下:...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
git 执行pull错误如何撤销 git pull fail
-
面试官:git pull是哪两个指令的组合?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git pull 之后本地代码被覆盖 解决方案
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)