百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

MySQL数据库修改小众参数解决大众问题

wptr33 2025-04-07 20:07 6 浏览

MySQL数据库中的SQL执行的时候经常会遇到未按预期走索引从而导致SQL执行时间长的情况出现。本文通过实际案例演示如何通过不修改SQL脚本而是通过修改数据库的参数来解决的案例。

1. 基础信息

数据库版本:MySQL5.7.30 (percona分支)

表结构信息如下

因包含字段较多,只截取部分重要字段
CREATE TABLE `tb1` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',
  c3 varchar(50) NOT NULL COMMENT '',
  c1 varchar(20) NOT NULL COMMENT '',
  c2 varchar(30) NOT NULL COMMENT '',
  c4 tinyint(1) NOT NULL DEFAULT '0' COMMENT '',
  c6 datetime NOT NULL COMMENT '',
  c5 datetime NOT NULL COMMENT '',
  c7 varchar(10) DEFAULT '' COMMENT '',
  'c20' text ,
  PRIMARY KEY (`id`),
  KEY `idx_c1_c2` (c1,c2) USING BTREE,
  KEY `idx_c3` (c3),
  KEY `idx_c1_c4` (c1,c4),
  KEY `idx_c1_c5` (c1,c5),
  KEY `idx_c6_c7_c4` (c6,c7,c4) USING BTREE,
  KEY `idx_c7_c2_c6` (c7,c2,c6)
) ENGINE=InnoDB AUTO_INCREMENT=76579517 DEFAULT CHARSET=utf8

索引统计信息如下

+------+-----------+--------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table| Non_unique| Key_name     | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+------------------+--------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| tb1 |          0 | PRIMARY      |            1 | id          | A         |    32237890 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c1_c2    |            1 | c1          | A         |      246510 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c1_c2    |            2 | c2          | A         |      558882 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c3       |            1 | c3          | A         |    32237890 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c1_c4    |            1 | c1          | A         |      567771 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c1_c4    |            2 | c4          | A         |      450892 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c1_c5    |            1 | c1          | A         |      260380 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c1_c5    |            2 | c5          | A         |    32237890 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c6_c7_c4 |            1 | c6          | A         |    15031719 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c6_c7_c4 |            2 | c7          | A         |    21172686 |     NULL | NULL   | YES  | BTREE      |         |               |
| tb1 |          1 | idx_c6_c7_c4 |            3 | c4          | A         |    22562920 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c7_c2_c6 |            1 | c7          | A         |        9330 |     NULL | NULL   | YES  | BTREE      |         |               |
| tb1 |          1 | idx_c7_c2_c6 |            2 | c2          | A         |       53700 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c7_c2_c6 |            3 | c6          | A         |    22523070 |     NULL | NULL   |      | BTREE      |         |               |
+------------------+--------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+

实际数据量约4千万。

已出现的慢SQL,最大耗时超过10mins

 select a.* from tb1 a where a.c1 = '123' and c4 in (0, 3) and c5 >=DATE_SUB('2025-03-21 14:40:14', INTERVAL 15 DAY) order by id  limit 100;

执行计划如下

 +----+-------------+-------+------------+-------+--------------------------------+---------+---------+------+-------+----------+-------------+
| id | select_type | table | partitions | type  | possible_keys                   | key     | key_len | ref  | rows  | filtered | Extra       |
+----+-------------+-------+------------+-------+---------------------------------+---------+---------+------+-------+----------+-------------+
|  1 | SIMPLE      | a     | NULL       | index | idx_c1_c2,idx_c1_c4,idx_c1_c5   | PRIMARY | 8       | NULL | 21978 |     0.11 | Using where |
+----+-------------+-------+------------+-------+---------------------------------+---------+---------+------+-------+----------+-------------+

2. 原因分析

简而言之以上SQL不走其他索引的原因如下:

主键索引通常是聚集索引,在InnoDB中,表的数据是按照主键顺序存储的。当执行ORDER BY id时,优化器可能认为使用主键索引可以避免额外的排序,因为数据已经按主键顺序存储了。所以如果查询中带有ORDER BY主键字段,优化器可能会倾向于使用主键索引,尤其是当有其他条件过滤后,如果结果集较小,可能更高效。

只不过本次优化器的判断有点小失误,实际上使用上述其他索引(例如idx_c1_c2,idx_c1_c4,idx_c1_c5 )中的任意一个都比走PRIMARY耗时更低。

3. 常规优化方式

2.1 修改SQL语句

原SQL语句可以有多种修改方式,最简单的方式便是去掉order by id,即改为

 select a.* from tb1 a where a.c1 = '123' and c4 in (0, 3) and c5 >=DATE_SUB('2025-03-21 14:40:14', INTERVAL 15 DAY)  limit 100;

修改后执行计划如下:

 +----+-------------+-------+-----------+-------+--------------------------------+------------+---------+------+-------+----------+-------------------------------------+
| id | select_type | table | partitions | type  | possible_keys                   | key       | key_len | ref  | rows  | filtered | Extra                               |
+----+-------------+-------+------------+-------+---------------------------------+-----------+---------+------+-------+----------+-------------------------------------+
|  1 | SIMPLE      | a     | NULL       | range | idx_c1_c2,idx_c1_c4,idx_c1_c5   | idx_c1_c4 | 63       | NULL |158207 |    33.33 | Using index condition; Using where|
+----+-------------+-------+------------+-------+---------------------------------+-----------+---------+------+-------+----------+-------------------------------------+

可见修改后执行计划明显变优。

当然也可以有其他的优化方式,例如忽略主键索引、强制走其他索引等,但是选择顺位相对靠后一点。

2.2 修改索引

还有一种方式是修改索引,这也是比较常用的方式,例如添加一个c1_c4_c5的组合索引

alter table tb1 add key idx_c1_c4_c5(c1,c4,c5);

修改后原SQL即使不修改也会走此组合索引,效率也会提升的更明显。

但是: 如果数据量很大时(例如本表),添加索引耗时较久,且会导致数据库IO加大,主从延迟等情况。如需操作可以使用pt-osc等工具在业务低谷时进行。

另外,在MySQL8.0中,还可以修改索引的可见或隐藏来解决一些问题,本案例不适用。

2.3 归档数据

因本案例的表部分数据可以归档,因此可以归档数据,降低本表数据量来解决

2.4 参数调整

optimizer_switch :常规调整的参数是optimizer_switch ,例如关闭index_merge,打开mrr、关闭batched_key_access等。本案例通过尝试均未能改变执行计划

sort_buffer:当sortbuffer不足时,可以调整sort buffer解决,本案例依旧未生效。

max_length_for_sort_data: 修改max_length_for_sort_data参数,也是为了解决排序问题(MySQL8.0此参数在实际优化过程中有变化,此处不再赘述)

当然还有其他的参数也可以调整进行尝试,此处省略


3. 本案例主角:max_seeks_for_key

参数简介:

max_seeks_for_key通过限制优化器假设的索引扫描最大搜索次数,间接控制查询计划的选择。例如,即使某个索引的实际基数(cardinality)较低(即重复值较多),若将此参数设置为较低值(如100),优化器会认为“通过索引最多只需100次键值搜索即可完成查询”,从而更倾向于选择索引扫描而非全表扫描。其默认值很大,相当于优化器完全依赖索引的统计信息(如基数)估算扫描成本,不对搜索次数做额外限制。

适用场景:

当表中存在低基数字段(如性别字段)或优化器因统计信息不准确而错误选择全表扫描时,通过调整此参数可强制优化器优先使用索引,尤其在以下情况:

  • 索引实际效率高于优化器估算值(例如大表中通过索引快速定位少量数据全表扫描
  • 因磁盘I/O或数据量过大导致性能瓶颈。


本案例调整演示

该参数使用的很小众,但本案例正好适用,例如:

mysql> set max_seeks_for_key=100;
Query OK, 0 rows affected (0.00 sec)

修改后执行计划如下:

 +----+-------------+-------+-----------+-------+--------------------------------+------------+---------+------+-------+----------+---------------------------------------------------+
| id | select_type | table | partitions | type  | possible_keys                   | key       | key_len | ref  | rows  | filtered | Extra                                             |
+----+-------------+-------+------------+-------+---------------------------------+-----------+---------+------+-------+----------+---------------------------------------------------+
|  1 | SIMPLE      | a     | NULL       | range | idx_c1_c2,idx_c1_c4,idx_c1_c5   | idx_c1_c2 | 62       | NULL |524552 |    6.67 | Using index condition; Using where; Using filesort|
+----+-------------+-------+------------+-------+---------------------------------+-----------+---------+------+-------+----------+---------------------------------------------------+

可见,虽然调整后虽然选择的索引依然不是最优的,但是已经相对较快了。优化后执行时间不到1s。

因此可以在添加组合索引及数据归档清理前临时调整该参数临时解决。

想要全局生效需要修改全局参数

set global  max_seeks_for_key=100;

相关推荐

【推荐】一款开源免费、美观实用的后台管理系统模版

如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!项目介绍...

Android架构组件-App架构指南,你还不收藏嘛

本指南适用于那些已经拥有开发Android应用基础知识的开发人员,现在想了解能够开发出更加健壮、优质的应用程序架构。首先需要说明的是:AndroidArchitectureComponents翻...

高德地图经纬度坐标批量拾取(高德地图批量查询经纬度)

使用方法在桌面上新建一个index.txt文件,把下面的代码复制进去保存,再把文件名改成index.html保存,双击运行打开即可...

flutter系列之:UI layout简介(flutter ui设计)

简介对于一个前端框架来说,除了各个组件之外,最重要的就是将这些组件进行连接的布局了。布局的英文名叫做layout,就是用来描述如何将组件进行摆放的一个约束。...

Android开发基础入门(一):UI与基础控件

Android基础入门前言:...

iOS的布局体系-流式布局MyFlowLayout

iOS布局体系的概览在我的CSDN博客中的几篇文章分别介绍MyLayout布局体系中的视图从一个方向依次排列的线性布局(MyLinearLayout)、视图层叠且停靠于父布局视图某个位置的框架布局(M...

TDesign企业级开源设计系统越发成熟稳定,支持 Vue3 / 小程序

TDesing发展越来越好了,出了好几套组件库,很成熟稳定了,新项目完全可以考虑使用。...

WinForm实现窗体自适应缩放(winform窗口缩放)

众所周知,...

winform项目——仿QQ即时通讯程序03:搭建登录界面

上两篇文章已经对CIM仿QQ即时通讯项目进行了需求分析和数据库设计。winform项目——仿QQ即时通讯程序01:原理及项目分析...

App自动化测试|原生app元素定位方法

元素定位方法介绍及应用Appium方法定位原生app元素...

61.C# TableLayoutPanel控件(c# tabcontrol)

摘要TableLayoutPanel在网格中排列内容,提供类似于HTML元素的功能。TableLayoutPanel控件允许你将控件放在网格布局中,而无需精确指定每个控件的位置。其单元格...

想要深入学习Android性能优化?看完这篇直接让你一步到位

...

12个python数据处理常用内置函数(python 的内置函数)

在python数据分析中,经常需要对字符串进行各种处理,例如拼接字符串、检索字符串等。下面我将对python中常用的内置字符串操作函数进行介绍。1.计算字符串的长度-len()函数str1='我爱py...

如何用Python程序将几十个PDF文件合并成一个PDF?其实只要这四步

假定你有一个很无聊的任务,需要将几十个PDF文件合并成一个PDF文件。每一个文件都有一个封面作为第一页,但你不希望合并后的文件中重复出现这些封面。即使有许多免费的程序可以合并PDF,很多也只是简单的将...

Python入门知识点总结,Python三大数据类型、数据结构、控制流

Python基础的重要性不言而喻,是每一个入门Python学习者所必备的知识点,作为Python入门,这部分知识点显得很庞杂,内容分支很多,大部分同学在刚刚学习时一头雾水。...