百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

MySQL数据库修改小众参数解决大众问题

wptr33 2025-04-07 20:07 15 浏览

MySQL数据库中的SQL执行的时候经常会遇到未按预期走索引从而导致SQL执行时间长的情况出现。本文通过实际案例演示如何通过不修改SQL脚本而是通过修改数据库的参数来解决的案例。

1. 基础信息

数据库版本:MySQL5.7.30 (percona分支)

表结构信息如下

因包含字段较多,只截取部分重要字段
CREATE TABLE `tb1` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',
  c3 varchar(50) NOT NULL COMMENT '',
  c1 varchar(20) NOT NULL COMMENT '',
  c2 varchar(30) NOT NULL COMMENT '',
  c4 tinyint(1) NOT NULL DEFAULT '0' COMMENT '',
  c6 datetime NOT NULL COMMENT '',
  c5 datetime NOT NULL COMMENT '',
  c7 varchar(10) DEFAULT '' COMMENT '',
  'c20' text ,
  PRIMARY KEY (`id`),
  KEY `idx_c1_c2` (c1,c2) USING BTREE,
  KEY `idx_c3` (c3),
  KEY `idx_c1_c4` (c1,c4),
  KEY `idx_c1_c5` (c1,c5),
  KEY `idx_c6_c7_c4` (c6,c7,c4) USING BTREE,
  KEY `idx_c7_c2_c6` (c7,c2,c6)
) ENGINE=InnoDB AUTO_INCREMENT=76579517 DEFAULT CHARSET=utf8

索引统计信息如下

+------+-----------+--------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table| Non_unique| Key_name     | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+------------------+--------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| tb1 |          0 | PRIMARY      |            1 | id          | A         |    32237890 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c1_c2    |            1 | c1          | A         |      246510 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c1_c2    |            2 | c2          | A         |      558882 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c3       |            1 | c3          | A         |    32237890 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c1_c4    |            1 | c1          | A         |      567771 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c1_c4    |            2 | c4          | A         |      450892 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c1_c5    |            1 | c1          | A         |      260380 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c1_c5    |            2 | c5          | A         |    32237890 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c6_c7_c4 |            1 | c6          | A         |    15031719 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c6_c7_c4 |            2 | c7          | A         |    21172686 |     NULL | NULL   | YES  | BTREE      |         |               |
| tb1 |          1 | idx_c6_c7_c4 |            3 | c4          | A         |    22562920 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c7_c2_c6 |            1 | c7          | A         |        9330 |     NULL | NULL   | YES  | BTREE      |         |               |
| tb1 |          1 | idx_c7_c2_c6 |            2 | c2          | A         |       53700 |     NULL | NULL   |      | BTREE      |         |               |
| tb1 |          1 | idx_c7_c2_c6 |            3 | c6          | A         |    22523070 |     NULL | NULL   |      | BTREE      |         |               |
+------------------+--------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+

实际数据量约4千万。

已出现的慢SQL,最大耗时超过10mins

 select a.* from tb1 a where a.c1 = '123' and c4 in (0, 3) and c5 >=DATE_SUB('2025-03-21 14:40:14', INTERVAL 15 DAY) order by id  limit 100;

执行计划如下

 +----+-------------+-------+------------+-------+--------------------------------+---------+---------+------+-------+----------+-------------+
| id | select_type | table | partitions | type  | possible_keys                   | key     | key_len | ref  | rows  | filtered | Extra       |
+----+-------------+-------+------------+-------+---------------------------------+---------+---------+------+-------+----------+-------------+
|  1 | SIMPLE      | a     | NULL       | index | idx_c1_c2,idx_c1_c4,idx_c1_c5   | PRIMARY | 8       | NULL | 21978 |     0.11 | Using where |
+----+-------------+-------+------------+-------+---------------------------------+---------+---------+------+-------+----------+-------------+

2. 原因分析

简而言之以上SQL不走其他索引的原因如下:

主键索引通常是聚集索引,在InnoDB中,表的数据是按照主键顺序存储的。当执行ORDER BY id时,优化器可能认为使用主键索引可以避免额外的排序,因为数据已经按主键顺序存储了。所以如果查询中带有ORDER BY主键字段,优化器可能会倾向于使用主键索引,尤其是当有其他条件过滤后,如果结果集较小,可能更高效。

只不过本次优化器的判断有点小失误,实际上使用上述其他索引(例如idx_c1_c2,idx_c1_c4,idx_c1_c5 )中的任意一个都比走PRIMARY耗时更低。

3. 常规优化方式

2.1 修改SQL语句

原SQL语句可以有多种修改方式,最简单的方式便是去掉order by id,即改为

 select a.* from tb1 a where a.c1 = '123' and c4 in (0, 3) and c5 >=DATE_SUB('2025-03-21 14:40:14', INTERVAL 15 DAY)  limit 100;

修改后执行计划如下:

 +----+-------------+-------+-----------+-------+--------------------------------+------------+---------+------+-------+----------+-------------------------------------+
| id | select_type | table | partitions | type  | possible_keys                   | key       | key_len | ref  | rows  | filtered | Extra                               |
+----+-------------+-------+------------+-------+---------------------------------+-----------+---------+------+-------+----------+-------------------------------------+
|  1 | SIMPLE      | a     | NULL       | range | idx_c1_c2,idx_c1_c4,idx_c1_c5   | idx_c1_c4 | 63       | NULL |158207 |    33.33 | Using index condition; Using where|
+----+-------------+-------+------------+-------+---------------------------------+-----------+---------+------+-------+----------+-------------------------------------+

可见修改后执行计划明显变优。

当然也可以有其他的优化方式,例如忽略主键索引、强制走其他索引等,但是选择顺位相对靠后一点。

2.2 修改索引

还有一种方式是修改索引,这也是比较常用的方式,例如添加一个c1_c4_c5的组合索引

alter table tb1 add key idx_c1_c4_c5(c1,c4,c5);

修改后原SQL即使不修改也会走此组合索引,效率也会提升的更明显。

但是: 如果数据量很大时(例如本表),添加索引耗时较久,且会导致数据库IO加大,主从延迟等情况。如需操作可以使用pt-osc等工具在业务低谷时进行。

另外,在MySQL8.0中,还可以修改索引的可见或隐藏来解决一些问题,本案例不适用。

2.3 归档数据

因本案例的表部分数据可以归档,因此可以归档数据,降低本表数据量来解决

2.4 参数调整

optimizer_switch :常规调整的参数是optimizer_switch ,例如关闭index_merge,打开mrr、关闭batched_key_access等。本案例通过尝试均未能改变执行计划

sort_buffer:当sortbuffer不足时,可以调整sort buffer解决,本案例依旧未生效。

max_length_for_sort_data: 修改max_length_for_sort_data参数,也是为了解决排序问题(MySQL8.0此参数在实际优化过程中有变化,此处不再赘述)

当然还有其他的参数也可以调整进行尝试,此处省略


3. 本案例主角:max_seeks_for_key

参数简介:

max_seeks_for_key通过限制优化器假设的索引扫描最大搜索次数,间接控制查询计划的选择。例如,即使某个索引的实际基数(cardinality)较低(即重复值较多),若将此参数设置为较低值(如100),优化器会认为“通过索引最多只需100次键值搜索即可完成查询”,从而更倾向于选择索引扫描而非全表扫描。其默认值很大,相当于优化器完全依赖索引的统计信息(如基数)估算扫描成本,不对搜索次数做额外限制。

适用场景:

当表中存在低基数字段(如性别字段)或优化器因统计信息不准确而错误选择全表扫描时,通过调整此参数可强制优化器优先使用索引,尤其在以下情况:

  • 索引实际效率高于优化器估算值(例如大表中通过索引快速定位少量数据全表扫描
  • 因磁盘I/O或数据量过大导致性能瓶颈。


本案例调整演示

该参数使用的很小众,但本案例正好适用,例如:

mysql> set max_seeks_for_key=100;
Query OK, 0 rows affected (0.00 sec)

修改后执行计划如下:

 +----+-------------+-------+-----------+-------+--------------------------------+------------+---------+------+-------+----------+---------------------------------------------------+
| id | select_type | table | partitions | type  | possible_keys                   | key       | key_len | ref  | rows  | filtered | Extra                                             |
+----+-------------+-------+------------+-------+---------------------------------+-----------+---------+------+-------+----------+---------------------------------------------------+
|  1 | SIMPLE      | a     | NULL       | range | idx_c1_c2,idx_c1_c4,idx_c1_c5   | idx_c1_c2 | 62       | NULL |524552 |    6.67 | Using index condition; Using where; Using filesort|
+----+-------------+-------+------------+-------+---------------------------------+-----------+---------+------+-------+----------+---------------------------------------------------+

可见,虽然调整后虽然选择的索引依然不是最优的,但是已经相对较快了。优化后执行时间不到1s。

因此可以在添加组合索引及数据归档清理前临时调整该参数临时解决。

想要全局生效需要修改全局参数

set global  max_seeks_for_key=100;

相关推荐

每天一个编程技巧!掌握这7个神技,代码效率飙升200%

“同事6点下班,你却为改BUG加班到凌晨?不是你不努力,而是没掌握‘偷懒’的艺术!本文揭秘谷歌工程师私藏的7个编程神技,每天1分钟,让你的代码从‘能用’变‘逆天’。文末附《Python高效代码模板》,...

Git重置到某个历史节点(Sourcetree工具)

前言Sourcetree回滚提交和重置当前分支到此次提交的区别?回滚提交是指将改动的代码提交到本地仓库,但未推送到远端仓库的时候。...

git工作区、暂存区、本地仓库、远程仓库的区别和联系

很多程序员天天写代码,提交代码,拉取代码,对git操作非常熟练,但是对git的原理并不甚了解,借助豆包AI,写个文章总结一下。Git的四个核心区域(工作区、暂存区、本地仓库、远程仓库)是版本控制的核...

解锁人生新剧本的密钥:学会让往事退场

开篇:敦煌莫高窟的千年启示在莫高窟321窟的《降魔变》壁画前,讲解员指着斑驳色彩说:"画师刻意保留了历代修补痕迹,因为真正的传承不是定格,而是流动。"就像我们的人生剧本,精彩章节永远...

Reset local repository branch to be just like remote repository HEAD

技术背景在使用Git进行版本控制时,有时会遇到本地分支与远程分支不一致的情况。可能是因为误操作、多人协作时远程分支被更新等原因。这时就需要将本地分支重置为与远程分支的...

Git恢复至之前版本(git恢复到pull之前的版本)

让程序回到提交前的样子:两种解决方法:回退(reset)、反做(revert)方法一:gitreset...

如何将文件重置或回退到特定版本(怎么让文件回到初始状态)

技术背景在使用Git进行版本控制时,经常会遇到需要将文件回退到特定版本的情况。可能是因为当前版本出现了错误,或者想要恢复到之前某个稳定的版本。Git提供了多种方式来实现这一需求。...

git如何正确回滚代码(git命令回滚代码)

方法一,删除远程分支再提交①首先两步保证当前工作区是干净的,并且和远程分支代码一致$gitcocurrentBranch$gitpullorigincurrentBranch$gi...

[git]撤销的相关命令:reset、revert、checkout

基本概念如果不清晰上面的四个概念,请查看廖老师的git教程这里我多说几句:最开始我使用git的时候,我并不明白我为什么写完代码要用git的一些列指令把我的修改存起来。后来用多了,也就明白了为什么。gi...

利用shell脚本将Mysql错误日志保存到数据库中

说明:利用shell脚本将MYSQL的错误日志提取并保存到数据库中步骤:1)创建数据库,创建表CreatedatabaseMysqlCenter;UseMysqlCenter;CREATET...

MySQL 9.3 引入增强的JavaScript支持

MySQL,这一广泛采用的开源关系型数据库管理系统(RDBMS),发布了其9.x系列的第三个更新版本——9.3版,带来了多项新功能。...

python 连接 mysql 数据库(python连接MySQL数据库案例)

用PyMySQL包来连接Python和MySQL。在使用前需要先通过pip来安装PyMySQL包:在windows系统中打开cmd,输入pipinstallPyMySQL ...

mysql导入导出命令(mysql 导入命令)

mysql导入导出命令mysqldump命令的输入是在bin目录下.1.导出整个数据库  mysqldump-u用户名-p数据库名>导出的文件名  mysqldump-uw...

MySQL-SQL介绍(mysql sqlyog)

介绍结构化查询语言是高级的非过程化编程语言,允许用户在高层数据结构上工作。它不要求用户指定对数据的存放方法,也不需要用户了解具体的数据存放方式,所以具有完全不同底层结构的不同数据库系统,可以使用相同...

MySQL 误删除数据恢复全攻略:基于 Binlog 的实战指南

在MySQL的世界里,二进制日志(Binlog)就是我们的"时光机"。它默默记录着数据库的每一个重要变更,就像一位忠实的史官,为我们在数据灾难中提供最后的救命稻草。本文将带您深入掌握如...