百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

Python随机模块22个函数详解(python 随机模块)

wptr33 2025-03-25 18:07 14 浏览

随机数可以用于数学,游戏,安全等领域中,还经常被嵌入到算法中,用以提高算法效率,并提高程序的安全性。平时数据分析各种分布的数据构造也会用到。

random模块,用于生成伪随机数,之所以称之为伪随机数,是因为真正意义上的随机数(或者随机事件)在某次产生过程中是按照实验过程中表现的分布概率随机产生的,其结果是不可预测的,是不可见的。而计算机中的随机函数是按照一定算法模拟产生的,对于正常随机而言,会出现某个事情出现多次的情况。

但是伪随机,在事情触发前设定好,就是这个十个事件各发生一次,只不过顺序不同而已。现在MP3的随机列表就是用的伪随机,把要播放的歌曲打乱顺序,生成一个随机列表而已,每个歌曲都播放一次。真实随机的话,会有出现某首歌多放次的情况,歌曲基数越多,重放的概率越大。

注意:random()是不能直接访问的,需要导入 random 模块,然后通过 random 静态对象调用该方法。


#加载所需要的包
import random 
import matplotlib.pyplot as plt
import seaborn as sns


#加载所需要的包
import random 
import matplotlib.pyplot as plt
import seaborn as sns

01 random

描述:random.random() 用于生成一个0到1的随机符点数: 0 <= n < 1.0

语法:random.random()

L = [0,1,2,3,4,5]
random.choice(L)
2


L = 'wofeichangshuai'
random.choice(L)
'h'

02 choice

描述:从非空序列seq中随机选取一个元素。如果seq为空则弹出 IndexError异常。

语法:random.choice( seq)seq 可以是一个列表,元组或字符串。

L = [0,1,2,3,4,5]
random.choice(L)
2


L = 'wofeichangshuai'
random.choice(L)
'h'

03 choices

描述:从集群中随机选取k次数据,返回一个列表,可以设置权重。

注意每次选取都不会影响原序列,每一次选取都是基于原序列。

语法:random.choices(population,weights=None,*,cum_weights=None,k=1)

参数:

  • population:集群。
  • weights:相对权重。
  • cum_weights:累加权重。
  • k:选取次数。
random.getrandbits(10)
379

04 getrandbits

描述:返回一个不大于K位的Python整数(十进制),比如k=10,则结果在0~2^10之间的整数。

语法:random.getrandbits(k)

random.getrandbits(10)
379

05 getstate

描述:返回一个捕获到的 生成器当前内部状态 的对象,可以将此对象传递给 setstate() 以恢复到这个状态。

语法:random.getstate()

06 setstate

描述:state 应该是从之前调用 getstate() 获得的,而 setstate() 将生成器的内部状态恢复到调用 getstate() 时的状态。根据下面的例子可以看出,由于生成器内部状态相同时会生成相同的下一个随机数,我们可以使用 getstate() 和 setstate() 对生成器内部状态进行获取和重置到某一状态下。

语法:random.setstate(state)

state = random.getstate()random.random()0.489148634943random.random()0.22359638172661822random.setstate(state)random.random()0.48914863494

07 randint

描述:用于生成一个指定范围内的整数。

语法:random.randint(a, b),其中参数a是下限,参数b是上限,生成的随机数n: a <= n <= b

random.randint(1, 8)3random.randint(1, 8)4

08 randrange

描述:按指定基数递增的集合中 获取一个随机数。如:random.randrange(10, 100, 2),结果相当于从[10, 12, 14, 16, … 96, 98]序列中获取一个随机数,random.randrange(10, 100, 2)在结果上与 random.choice(range(10, 100, 2) 等效。

语法:random.randrange([start], stop[, step])

  • 不指定step,随机生成[a,b)范围内一个整数。
  • 指定step,step作为步长会进一步限制[a,b)的范围,比如randrange(0,11,2)意即生成[0,11)范围内的随机偶数。
  • 不指定a,则默认从0开始。
#不限制[random.randrange(0,11) for i in range(5)][4, 6, 3, 9, 5]#随机偶数,运行5个数[random.randrange(0,11,2) for i in range(5)][2, 4, 8, 8, 6]

09 sample

描述:从population样本或集合中随机抽取K个不重复的元素形成新的序列。常用于不重复的随机抽样。返回的是一个新的序列,不会破坏原有序列。要从一个整数区间随机抽取一定数量的整数,请使用sample(range(1000000), k=60)类似的方法,这非常有效和节省空间。如果k大于population的长度,则弹出ValueError异常。

语法:random.sample(population, k)

注意:与random.choices()的区别:一个是选取k次,一个是选取k个,选取k次的相当于选取后又放回,选取k个则选取后不放回。故random.sample()的k值不能超出集群的元素个数。

random.sample(range(1000), k=5)[82, 678, 664, 177, 376]L = [0,1,2,3,4,5]random.sample(L,3)[5, 3, 1]random.sample(L,3)[2, 4, 5]

10 seed

描述:初始化伪随机数生成器。如果未提供a或者a=None,则使用系统时间为种子。如果a是一个整数,则作为种子。伪随机数生成模块。如果不提供 seed,默认使用系统时间。使用相同的 seed,可以获得完全相同的随机数序列,常用于算法改进测试。

语法:random.seed(a=None, version=2)

a = random.Random()a.seed(1)[a.randint(1, 100) for i in range(20)][14, 85, 77, 26, 50, 45, 66, 79, 10, 3, 84, 44, 77, 1, 45, 73, 23, 95, 91, 4]b =random.Random()b.seed(1)[b.randint(1, 100) for i in range(20)][14, 85, 77, 26, 50, 45, 66, 79, 10, 3, 84, 44, 77, 1, 45, 73, 23, 95, 91, 4]

11 shuffle

描述:用于将一个列表中的元素打乱。只能针对可变的序列,对于不可变序列,请使用下面的sample()方法。

语法:random.shuffle(x)

L = [0,1,2,3,4,5]random.shuffle(L)L[5, 4, 1, 0, 3, 2]

12 uniform

描述:产生[a,b]范围内一个随机浮点数。uniform()的a,b参数不需要遵循a<=b的规则,即a小b大也可以,此时生成[b,a]范围内的随机浮点数。

语法:random.uniform(x, y)

random.uniform(10, 11)10.789198208817488

13 vonmisesvariate

描述:卡帕分布

语法:vonmisesvariate(mu, kappa)

data = [random.vonmisesvariate(2,2) for i in range(20000)]
#直方图
plt.hist(data, bins=100,  color="#FF0000", alpha=.7)
#密度图
sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图

14 triangular

描述:返回一个low <= N <=high的三角形分布的随机数。参数mode指明众数出现位置。

语法: random.triangular(low, high, mode)

data = [random.vonmisesvariate(2,2) for i in range(20000)]#直方图plt.hist(data, bins=100,  color="#FF0000", alpha=.7)#密度图sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图无法显示


15 weibullvariate

描述:威布尔分布

语法:random.weibullvariate(alpha, beta)

data = [random.weibullvariate(1,2) for i in range(20000)]#直方图plt.hist(data, bins=100,  color="#FF0000", alpha=.7)sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图

16 betavariate

描述: β分布

语法:random.betavariate(alpha, beta)

data = [random.expovariate(2) for i in range(50000)]
#直方图
plt.hist(data, bins=100,  color="#FF0000", alpha=.7)
#密度图
sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图

17 expovariate

描述:指数分布

语法:random.expovariate(lambd)

data = [random.expovariate(2) for i in range(50000)]
#直方图
plt.hist(data, bins=100,  color="#FF0000", alpha=.7)
#密度图
sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图


18 gammavariate

描述: 伽马分布

语法:random.gammavariate(alpha, beta)

data = [random.gauss(2,2) for i in range(50000)]
#直方图
plt.hist(data, bins=100,  color="#FF0000", alpha=.7)
#密度图
sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图

19 gauss

描述:高斯分布

语法:random.gauss(mu, sigma)

data = [random.gauss(2,2) for i in range(50000)]
#直方图
plt.hist(data, bins=100,  color="#FF0000", alpha=.7)
#密度图
sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图

20 lognormvariate

描述:对数正态分布

语法:random.lognormvariate(mu, sigma)

示例:

data = [random.gauss(2,2) for i in range(50000)]#直方图plt.hist(data, bins=100,  color="#FF0000", alpha=.7)#密度图sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图

21 normalvariate

描述: 正态分布

语法:random.normalvariate(mu, sigma)

data = [random.normalvariate(2,4) for i in range(20000)]
#直方图
plt.hist(data, bins=100,  color="#FF0000", alpha=.7)
#密度图
sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图

22 paretovariate

描述:帕累托分布

语法:random.paretovariate(alpha)

data = [random.paretovariate(4) for i in range(50000)]
#直方图
plt.hist(data, bins=100,  color="#FF0000", alpha=.7)
#密度图
sns.kdeplot(data, shade=True,color="#FF0000")

直方图

密度图


相关推荐

每天一个编程技巧!掌握这7个神技,代码效率飙升200%

“同事6点下班,你却为改BUG加班到凌晨?不是你不努力,而是没掌握‘偷懒’的艺术!本文揭秘谷歌工程师私藏的7个编程神技,每天1分钟,让你的代码从‘能用’变‘逆天’。文末附《Python高效代码模板》,...

Git重置到某个历史节点(Sourcetree工具)

前言Sourcetree回滚提交和重置当前分支到此次提交的区别?回滚提交是指将改动的代码提交到本地仓库,但未推送到远端仓库的时候。...

git工作区、暂存区、本地仓库、远程仓库的区别和联系

很多程序员天天写代码,提交代码,拉取代码,对git操作非常熟练,但是对git的原理并不甚了解,借助豆包AI,写个文章总结一下。Git的四个核心区域(工作区、暂存区、本地仓库、远程仓库)是版本控制的核...

解锁人生新剧本的密钥:学会让往事退场

开篇:敦煌莫高窟的千年启示在莫高窟321窟的《降魔变》壁画前,讲解员指着斑驳色彩说:"画师刻意保留了历代修补痕迹,因为真正的传承不是定格,而是流动。"就像我们的人生剧本,精彩章节永远...

Reset local repository branch to be just like remote repository HEAD

技术背景在使用Git进行版本控制时,有时会遇到本地分支与远程分支不一致的情况。可能是因为误操作、多人协作时远程分支被更新等原因。这时就需要将本地分支重置为与远程分支的...

Git恢复至之前版本(git恢复到pull之前的版本)

让程序回到提交前的样子:两种解决方法:回退(reset)、反做(revert)方法一:gitreset...

如何将文件重置或回退到特定版本(怎么让文件回到初始状态)

技术背景在使用Git进行版本控制时,经常会遇到需要将文件回退到特定版本的情况。可能是因为当前版本出现了错误,或者想要恢复到之前某个稳定的版本。Git提供了多种方式来实现这一需求。...

git如何正确回滚代码(git命令回滚代码)

方法一,删除远程分支再提交①首先两步保证当前工作区是干净的,并且和远程分支代码一致$gitcocurrentBranch$gitpullorigincurrentBranch$gi...

[git]撤销的相关命令:reset、revert、checkout

基本概念如果不清晰上面的四个概念,请查看廖老师的git教程这里我多说几句:最开始我使用git的时候,我并不明白我为什么写完代码要用git的一些列指令把我的修改存起来。后来用多了,也就明白了为什么。gi...

利用shell脚本将Mysql错误日志保存到数据库中

说明:利用shell脚本将MYSQL的错误日志提取并保存到数据库中步骤:1)创建数据库,创建表CreatedatabaseMysqlCenter;UseMysqlCenter;CREATET...

MySQL 9.3 引入增强的JavaScript支持

MySQL,这一广泛采用的开源关系型数据库管理系统(RDBMS),发布了其9.x系列的第三个更新版本——9.3版,带来了多项新功能。...

python 连接 mysql 数据库(python连接MySQL数据库案例)

用PyMySQL包来连接Python和MySQL。在使用前需要先通过pip来安装PyMySQL包:在windows系统中打开cmd,输入pipinstallPyMySQL ...

mysql导入导出命令(mysql 导入命令)

mysql导入导出命令mysqldump命令的输入是在bin目录下.1.导出整个数据库  mysqldump-u用户名-p数据库名>导出的文件名  mysqldump-uw...

MySQL-SQL介绍(mysql sqlyog)

介绍结构化查询语言是高级的非过程化编程语言,允许用户在高层数据结构上工作。它不要求用户指定对数据的存放方法,也不需要用户了解具体的数据存放方式,所以具有完全不同底层结构的不同数据库系统,可以使用相同...

MySQL 误删除数据恢复全攻略:基于 Binlog 的实战指南

在MySQL的世界里,二进制日志(Binlog)就是我们的"时光机"。它默默记录着数据库的每一个重要变更,就像一位忠实的史官,为我们在数据灾难中提供最后的救命稻草。本文将带您深入掌握如...