Oracle向量数据库操作的一些随手笔记
wptr33 2024-12-26 17:07 35 浏览
1. Basic Demo:
| c(2,6). . b(5,6)
| .
| .
| a(2,2)
|_________________________
|b-a| = sqrt( (5-2)^2 + (6-2)^2 ) = 5
SELECT VECTOR_DISTANCE( vector('[2,2]'), vector('[5,6]'), EUCLIDEAN ) as distance;
How about COSINE?
CREATE TABLE IF NOT EXISTS embedding_store_hysun (
collection_name VARCHAR2(200) NOT NULL,
embedding VECTOR(*, FLOAT32) NOT NULL,
doc CLOB NOT NULL,
src VARCHAR2(500)
);
############################ In database embedding ############################
#EXEC DBMS_VECTOR.DROP_ONNX_MODEL(model_name => 'doc_model', force => true);
#SQL> grant DB_DEVELOPER_ROLE to vector;
SQL> grant create mining model to pocuser;
Grant succeeded.
SQL> create or replace directory HYSUN_DUMP as '/u01/ords_sw/hysun_dump';
Directory HYSUN_DUMP created.
SQL> grant read on directory HYSUN_DUMP to pocuser;
Grant succeeded.
EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL('HYSUN_DUMP','bge-base-zh-v1.5.onnx','hysun_bge_zh_model',JSON('{"function" : "embedding", "embeddingOutput" : "embedding"}'));
SELECT MODEL_NAME, MINING_FUNCTION, ALGORITHM, ALGORITHM_TYPE, MODEL_SIZE
FROM USER_MINING_MODELS;
SQL> INSERT INTO embedding_store_hysun select 'DB_EMBED_TEST0', VECTOR_EMBEDDING(hysun_bge_zh_model USING 'Minimum Age to Get a Licence The minimum age to get a licence. minimum age' as input), 'Minimum Age to Get a Licence The minimum age to get a licence. minimum age', '/home/hysunhe/projects/oracle_vectordb/source_data/cdc_poc/QA_1.txt' from dual;
1 row inserted.
SQL> INSERT INTO embedding_store_hysun select 'DB_EMBED_TEST0', VECTOR_EMBEDDING(hysun_bge_zh_model USING 'Minimum Requirements for Enrolment The list of requirements/ enrolment prerequisites that needs to be met before enrolment. class 3/3a, Class 3A, class 2B, class 2, minimum requirements, enrolment' as input), 'Minimum Requirements for Enrolment The list of requirements/ enrolment prerequisites that needs to be met before enrolment. class 3/3a, Class 3A, class 2B, class 2, minimum requirements, enrolment', '/home/hysunhe/projects/oracle_vectordb/source_data/cdc_poc/QA_2.txt' from dual;
1 row inserted.
SQL> SELECT VECTOR_EMBEDDING(hysun_bge_zh_model USING 'mininum age to get a license' as input) AS embedding;
SELECT
collection_name,
embedding,
doc,
src,
VECTOR_DISTANCE(embedding, VECTOR_EMBEDDING(hysun_bge_zh_model USING 'mininum age to get a license' as input), COSINE) as distance
FROM embedding_store_hysun
WHERE
collection_name = 'DB_EMBED_TEST0'
ORDER BY distance
FETCH FIRST 3 ROWS ONLY;
######################## In database embedding end ########################
### Index:
show parameter vector_memory_size;
ALTER SYSTEM SET vector_memory_size=ON SCOPE=BOTH;
SELECT value FROM V$PARAMETER WHERE name='sga_target'; -- (max vector_memory_size = 70% SGA)
SELECT CON_ID, sum(alloc_bytes) / 1024 / 1024 FROM V$VECTOR_MEMORY_POOL GROUP BY CON_ID;
SELECT CON_ID, sum(USED_BYTES) / 1024 / 1024 FROM V$VECTOR_MEMORY_POOL GROUP BY CON_ID;
############################################################
In-Memory Neighbor Graph Vector Index(HNSW)
############################################################
create table galaxies (id number, name varchar2(50), doc varchar2(500), embedding vector);
insert into galaxies values (1, 'M31', 'Messier 31 is a barred spiral galaxy in the Andromeda constellation which has a lot of barred spiral galaxies.', '[0,2,2,0,0]');
insert into galaxies values (2, 'M33', 'Messier 33 is a spiral galaxy in the Triangulum constellation.', '[0,0,1,0,0]');
insert into galaxies values (3, 'M58', 'Messier 58 is an intermediate barred spiral galaxy in the Virgo constellation.', '[1,1,1,0,0]');
insert into galaxies values (4, 'M63', 'Messier 63 is a spiral galaxy in the Canes Venatici constellation.', '[0,0,1,0,0]');
insert into galaxies values (5, 'M77', 'Messier 77 is a barred spiral galaxy in the Cetus constellation.', '[0,1,1,0,0]');
insert into galaxies values (6, 'M91', 'Messier 91 is a barred spiral galaxy in the Coma Berenices constellation.', '[0,1,1,0,0]');
insert into galaxies values (7, 'M49', 'Messier 49 is a giant elliptical galaxy in the Virgo constellation.', '[0,0,0,1,1]');
insert into galaxies values (8, 'M60', 'Messier 60 is an elliptical galaxy in the Virgo constellation.', '[0,0,0,0,1]');
insert into galaxies values (9, 'NGC1073', 'NGC 1073 is a barred spiral galaxy in Cetus constellation.', '[0,1,1,0,0]');
SELECT name
FROM galaxies
ORDER BY VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE )
FETCH FIRST 3 ROWS ONLY;
SELECT name,
ROUND( VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE ), 2) as distance
FROM galaxies
ORDER BY distance
FETCH APPROXIMATE FIRST 4 ROWS ONLY;
-- WITH TARGET ACCURACY 90
EXPLAIN PLAN FOR
SELECT name,
VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE ) as distance
FROM galaxies
ORDER BY distance
FETCH APPROXIMATE FIRST 4 ROWS ONLY;
select plan_table_output from table(dbms_xplan.display('plan_table',null,'all'));
CREATE VECTOR INDEX galaxies_hnsw_idx ON galaxies (embedding) ORGANIZATION
INMEMORY NEIGHBOR GRAPH
DISTANCE COSINE
WITH TARGET ACCURACY 95;
CREATE VECTOR INDEX galaxies_hnsw_idx ON galaxies (embedding) ORGANIZATION
INMEMORY NEIGHBOR GRAPH
DISTANCE COSINE
WITH TARGET ACCURACY 90 PARAMETERS (type HNSW, neighbors 40, efconstruction
500);
SELECT name,
ROUND(VECTOR_DISTANCE( embedding, to_vector('[0,1,1,0,0]'), COSINE ), 3) distance
FROM galaxies
WHERE name <> 'NGC1073'
ORDER BY distance
FETCH APPROXIMATE FIRST 4 ROWS ONLY WITH TARGET ACCURACY 90;
drop INDEX galaxies_hnsw_idx;
##############################################################
Neighbor Partition Vector Index (IVF)
##############################################################
CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) ORGANIZATION
NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 95;
CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) ORGANIZATION
NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 90 PARAMETERS (type IVF, neighbor partitions 100);
The APPROX and APPROXIMATE keywords are optional. If omitted while connected to an
ADB-S instance, an approximate search using a vector index is attempted if one
exists.
-- Accuracy report
SET SERVEROUTPUT ON
declare
report varchar2(128);
begin
report := dbms_vector.index_accuracy_query(
OWNER_NAME => 'POCUSER',
INDEX_NAME => 'GALAXIES_IVF_IDX',
qv => to_vector('[0,1,1,0,0]'),
top_K => 10,
target_accuracy => 95 );
dbms_output.put_line(report);
end;
/
-- Index detail:
grant read on VECSYS.VECTOR$INDEX to pocuser;
SELECT JSON_SERIALIZE(IDX_PARAMS RETURNING VARCHAR2 PRETTY)
FROM VECSYS.VECTOR$INDEX WHERE IDX_NAME = 'GALAXIES_IVF_IDX';
CREATE PUBLIC DATABASE LINK LinkToLA1 CONNECT TO vectordemo IDENTIFIED BY "welcome1" USING '146.235.233.91:1521/pdb1.sub08030309530.justinvnc1.oraclevcn.com';
select OWNER, DB_LINK, USERNAME, VALID, HOST from all_db_links;
alter session set global_names=false;
select 1 from dual@LINKTOLA1;
#### Memo
grant create any directory to pocuser;
create directory RAG_DOC_DIR as '/u01/hysun/rag_docs';
create table RAG_FILES (
file_name varchar2(500),
file_content BLOB
);
create table RAG_INDB_PIPELINE (
id number,
name varchar2(50),
doc varchar2(500),
embedding VECTOR
);
Declare
mFile VARCHAR2(500) := 'Oracle向量数据库_lab.pdf';
mBLOB BLOB := Empty_Blob();
mBinFile BFILE := BFILENAME('RAG_DOC_DIR', mFile);
Begin
DBMS_LOB.OPEN(mBinFile, DBMS_LOB.LOB_READONLY); -- Open BFILE
DBMS_LOB.CreateTemporary(mBLOB, TRUE, DBMS_LOB.Session); -- BLOB locator initialization
DBMS_LOB.OPEN(mBLOB, DBMS_LOB.LOB_READWRITE); -- Open BLOB locator for writing
DBMS_LOB.LoadFromFile(mBLOB, mBinFile, DBMS_LOB.getLength(mBinFile)); -- Reading BFILE into BLOB
DBMS_LOB.CLOSE(mBLOB); -- Close BLOB locator
DBMS_LOB.CLOSE(mBinFile); -- Close BFILE
INSERT INTO RAG_FILES(file_name, file_content) values (mFile, mBLOB);
commit;
End;
/
insert into RAG_FILES(file_name, file_content) values('oracle-vector-lab', to_blob(bfilename('RAG_DOC_DIR', 'Oracle向量数据库_lab.pdf')));
commit;
select DBMS_LOB.getLength(FILE_CONTENT) from RAG_FILES;
drop table rag_doc_chunks purge;
create table rag_doc_chunks (doc_id varchar2(500), chunk_id number, chunk_data varchar2(4000), chunk_embedding vector);
-- utl_to_text: PDF -> TEXT
-- utl_to_chunks: TEXT -> CHUNKS
-- utl_to_embeddings: CHUNKS -> VECTORS
insert into rag_doc_chunks
select
dt.file_name doc_id,
et.embed_id chunk_id,
et.embed_data chunk_data,
to_vector(et.embed_vector) chunk_embedding
from
rag_files dt,
dbms_vector_chain.utl_to_embeddings(
dbms_vector_chain.utl_to_chunks(
dbms_vector_chain.utl_to_text(dt.file_content),
json('{"normalize":"all"}')
),
json('{"provider":"database", "model":"mydoc_model"}')
) t,
JSON_TABLE(
t.column_value,
'$[*]' COLUMNS (
embed_id NUMBER PATH '$.embed_id',
embed_data VARCHAR2(4000) PATH '$.embed_data',
embed_vector CLOB PATH '$.embed_vector'
)
) et;
commit;
insert into rag_doc_chunks
select
dt.file_name doc_id,
et.embed_id chunk_id,
et.embed_data chunk_data,
to_vector(et.embed_vector) chunk_embedding
from
rag_files dt,
dbms_vector_chain.utl_to_embeddings(
dbms_vector_chain.utl_to_chunks(
dbms_vector_chain.utl_to_text(dt.file_content),
JSON('{ "by":"words",
"max":"240",
"overlap":"15",
"split":"recursively",
"language":"SIMPLIFIED CHINESE",
"normalize":"all" }')
),
json('{"provider":"database", "model":"mydoc_model"}')
) t,
JSON_TABLE(
t.column_value,
'$[*]' COLUMNS (
embed_id NUMBER PATH '$.embed_id',
embed_data VARCHAR2(4000) PATH '$.embed_data',
embed_vector CLOB PATH '$.embed_vector'
)
) et;
commit;
select
dbms_vector_chain.utl_to_chunks(TO_CLOB(FILE_CONTENT),
JSON('{ "by":"words",
"max":"240",
"overlap":"15",
"split":"recursively",
"language":"SIMPLIFIED CHINESE",
"normalize":"all" }'))
from RAG_FILES;
SELECT
dbms_vector.utl_to_embedding(
'This is a test',
json('{
"provider": "OCIGenAI",
"credential_name": "OCI_GENAI_CRED_FOR_APEX",
"url": "https://inference.generativeai.us-chicago-1.oci.oraclecloud.com/20231130/actions/embedText",
"model": "cohere.embed-multilingual-v3.0"
}')
) embedding
FROM dual;
SELECT
dbms_vector.utl_to_embedding(
'This is a test',
json('{
"provider": "database",
"model": "doc_model"
}')
) embedding
FROM dual;
create or replace directory MODELS_DIR as '/u01/hysun/models';
EXEC DBMS_VECTOR.DROP_ONNX_MODEL(model_name => 'mydoc_model', force => true);
-- BEGIN
-- DBMS_VECTOR.LOAD_ONNX_MODEL(
-- directory => 'MODELS_DIR',
-- file_name => 'bge-base-zh-v1.5.onnx',
-- model_name => 'mydoc_model',
-- metadata => JSON('{"function" : "embedding", "embeddingOutput" : "embedding", "input":{"input": ["DATA"]}}')
-- );
-- END;
-- /
BEGIN
DBMS_VECTOR.LOAD_ONNX_MODEL(
directory => 'MODELS_DIR',
file_name => 'bge-base-zh-v1.5.onnx',
model_name => 'mydoc_model'
);
END;
/
SELECT vector_embedding(mydoc_model using 'hello' as data);
select
chunk_data,
VECTOR_DISTANCE(chunk_embedding, VECTOR_EMBEDDING(mydoc_model USING '本次实验的先决条件' as data), COSINE) as distance
from rag_doc_chunks
order by distance
FETCH APPROX FIRST 1 ROWS ONLY;
-- grant CREATE CREDENTIAL
BEGIN
DBMS_VECTOR_CHAIN.CREATE_CREDENTIAL (
CREDENTIAL_NAME => 'LAB_OPENAI_CRED',
PARAMS => json('{ "access_token": "EMPTY" }')
);
END;
/
select dbms_vector_chain.utl_to_generate_text(
'Oracle 向量数据库是什么',
json('{
"provider": "openai",
"credential_name": "LAB_OPENAI_CRED",
"url": "http://146.235.226.110:8098/v1/chat/completions",
"model": "Qwen2-7B-Instruct"
}') ) from dual;
select *
from (
select
chunk_data
from rag_doc_chunks
order by VECTOR_DISTANCE(chunk_embedding, VECTOR_EMBEDDING(mydoc_model USING '本次实验的先决条件' as data), COSINE)
FETCH APPROX FIRST 3 ROWS ONLY
) dt,
dbms_vector_chain.utl_to_generate_text(
dt.chunk_data,
json('{
"provider": "openai",
"credential_name": "LAB_OPENAI_CRED",
"url": "http://146.235.226.110:8098/v1/chat/completions",
"model": "Qwen2-7B-Instruct"
}')
) rag
declare
l_question varchar2(500) := '本次实验的先决条件';
l_input CLOB;
l_clob CLOB;
j apex_json.t_values;
l_context CLOB;
l_rag_result CLOB;
begin
-- 第一步:从向量数据库中检索出与问题相似的内容
for rec in (
select
chunk_data
from rag_doc_chunks
order by VECTOR_DISTANCE(chunk_embedding, VECTOR_EMBEDDING(mydoc_model USING l_question as data), COSINE)
FETCH APPROX FIRST 3 ROWS ONLY
) loop
l_context := l_context || rec.chunk_data || chr(10);
end loop;
-- 第二步:提示工程:将相似内容和用户问题一起,组成大语言模型的输入
l_input := '你是一个诚实且专业的数据库知识问答助手,请仅仅根据提供的上下文信息内容,回答用户的问题,且不要试图编造答案。\n 以下是上下文信息:' || replace(l_context, chr(10), '\n') || '\n请用英文回答用户问题:' || l_question;
-- 第三步:调用大语言模型,生成RAG结果
for rec in (select dbms_vector_chain.utl_to_generate_text(
l_input,
json('{
"provider": "openai",
"credential_name": "LAB_OPENAI_CRED",
"url": "http://146.235.226.110:8098/v1/chat/completions",
"model": "Qwen2-7B-Instruct"
}')
) as rag from dual) loop
dbms_output.put_line('*** RAG Result: ' || rec.rag);
end loop;
-- apex_json.parse(j, l_clob);
-- l_rag_result := apex_json.get_varchar2(p_path => 'choices[%d].message.content', p0 => 1, p_values => j);
-- dbms_output.put_line('*** RAG Result: ' || l_rag_result);
end;
/
```
srvctl stop instance -d ai23 -i ai232 -force
srvctl status database -d ai23
srvctl start instance -d ai23 -i ai232
相关推荐
- 【推荐】一款开源免费、美观实用的后台管理系统模版
-
如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!项目介绍...
- Android架构组件-App架构指南,你还不收藏嘛
-
本指南适用于那些已经拥有开发Android应用基础知识的开发人员,现在想了解能够开发出更加健壮、优质的应用程序架构。首先需要说明的是:AndroidArchitectureComponents翻...
- 高德地图经纬度坐标批量拾取(高德地图批量查询经纬度)
-
使用方法在桌面上新建一个index.txt文件,把下面的代码复制进去保存,再把文件名改成index.html保存,双击运行打开即可...
- flutter系列之:UI layout简介(flutter ui设计)
-
简介对于一个前端框架来说,除了各个组件之外,最重要的就是将这些组件进行连接的布局了。布局的英文名叫做layout,就是用来描述如何将组件进行摆放的一个约束。...
- Android开发基础入门(一):UI与基础控件
-
Android基础入门前言:...
- iOS的布局体系-流式布局MyFlowLayout
-
iOS布局体系的概览在我的CSDN博客中的几篇文章分别介绍MyLayout布局体系中的视图从一个方向依次排列的线性布局(MyLinearLayout)、视图层叠且停靠于父布局视图某个位置的框架布局(M...
- TDesign企业级开源设计系统越发成熟稳定,支持 Vue3 / 小程序
-
TDesing发展越来越好了,出了好几套组件库,很成熟稳定了,新项目完全可以考虑使用。...
- WinForm实现窗体自适应缩放(winform窗口缩放)
-
众所周知,...
- winform项目——仿QQ即时通讯程序03:搭建登录界面
-
上两篇文章已经对CIM仿QQ即时通讯项目进行了需求分析和数据库设计。winform项目——仿QQ即时通讯程序01:原理及项目分析...
- App自动化测试|原生app元素定位方法
-
元素定位方法介绍及应用Appium方法定位原生app元素...
- 61.C# TableLayoutPanel控件(c# tabcontrol)
-
摘要TableLayoutPanel在网格中排列内容,提供类似于HTML元素的功能。TableLayoutPanel控件允许你将控件放在网格布局中,而无需精确指定每个控件的位置。其单元格...
- 12个python数据处理常用内置函数(python 的内置函数)
-
在python数据分析中,经常需要对字符串进行各种处理,例如拼接字符串、检索字符串等。下面我将对python中常用的内置字符串操作函数进行介绍。1.计算字符串的长度-len()函数str1='我爱py...
- 如何用Python程序将几十个PDF文件合并成一个PDF?其实只要这四步
-
假定你有一个很无聊的任务,需要将几十个PDF文件合并成一个PDF文件。每一个文件都有一个封面作为第一页,但你不希望合并后的文件中重复出现这些封面。即使有许多免费的程序可以合并PDF,很多也只是简单的将...
- Python入门知识点总结,Python三大数据类型、数据结构、控制流
-
Python基础的重要性不言而喻,是每一个入门Python学习者所必备的知识点,作为Python入门,这部分知识点显得很庞杂,内容分支很多,大部分同学在刚刚学习时一头雾水。...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
面试官:git pull是哪两个指令的组合?
-
git pull命令使用实例 git pull--rebase
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git 执行pull错误如何撤销 git pull fail
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mysql max (33)
- vba instr (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)