百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

Python教程——20.协程 - 2 python2.7 协程

wptr33 2024-12-25 16:03 40 浏览

异步编程

asyncio.Future 对象

Task 继承 Future, Task对象内部中的await结果的处理基于Future对象来的

在Future对象中会保存当前执行的这个协程任务的状态,如果当前任务状态为finished, 则await不再等待。


示例1:

import asyncio


async def main():
    # 获取当前事件循环
    loop = asyncio.get_running_loop()
    # 创建一个任务[Future对象] 当前没有任何任务
    fut = loop.create_future()
    # 等待任务的最终结果,没有结果则一直等待
    await fut


asyncio.run(main())


示例2:

import asyncio


async def set_after(fut):
    await asyncio.sleep(2)
    fut.set_result('这是一个测试结果')


async def main():
    # 获取事件循环
    loop = asyncio.get_running_loop()

    # 创建一个任务, 并且当前任务没有绑定任何行为, 则这个任务永远不知道什么时候结束
    fut = loop.create_future()

    # 手动设置future任务的最终结果
    await loop.create_task(set_after(fut))

    # 等待Future对象获取最终的结果, 否则就一直等
    data = await fut
    print(data)


asyncio.run(main())


concurrent.futures.Future 对象

使用线程池、进程池实现异步操作时会使用到的对象。

import time
from concurrent.futures import Future
from concurrent.futures.thread import ThreadPoolExecutor
from concurrent.futures.process import ProcessPoolExecutor


def func(value):
    time.sleep(1)
    print(value)


# 创建线程池
pool = ThreadPoolExecutor(max_workers=5)

# 创建进程池
# pool = ProcessPoolExecutor(max_workers=5)

for i in range(10):
    fut = pool.submit(func, i)
    print(fut)

一般情况下,代码编写需要统一编程风格,简而言之,就是如果使用的是线程/进程,则整个程序都统一使用线程/进程。

只有一种情况可能会进行交叉编程。一个项目中的所有IO请求为协程异步请求,假设MySQL数据库版本过低导致无法使用协程进行并发存储,这种情况会使用线程/进程完成并发存储任务。

import time
import asyncio
import concurrent.futures


def func_1():
    time.sleep(2)
    return '测试'


async def main():
    loop = asyncio.get_running_loop()

    # 在协程函数中运行普通函数 在执行函数时,协程内部会自动创建一个线程池来运行任务
    # run_in_executor()方法第一个参数为None时则默认创建一个线程池
    fut = loop.run_in_executor(None, func_1)
    result = await fut
    print('当前方式会自动创建一个线程池去执行普通函数: ', result)

    # 在协程函数中运行基于线程池的任务, 效果与以上代码一致
    with concurrent.futures.ThreadPoolExecutor() as pool:
        result = await loop.run_in_executor(pool, func_1)
        print('在线程池中得到的执行结果: ', result)

    # 在协程函数中运行基于进程池的任务
    with concurrent.futures.ProcessPoolExecutor() as pool:
        result = await loop.run_in_executor(pool, func_1)
        print('在进程池中得到的执行结果: ', result)


if __name__ == "__main__":
    asyncio.run(main())


案例:asyncio + 不支持异步的模块(requests)

import asyncio
import requests


async def download_image(url):
    # 发送网络请求,下载图片(遇到网络下载图片的IO请求,自动切换到其他任务)
    print('开始下载: ', url)
    
    loop = asyncio.get_event_loop()
    # requests 模块默认不支持异步操作,所以使用线程池来配合实现
    future = loop.run_in_executor(None, requests.get, url)
    response = await future
    print('下载完成...')

    # 保存图片
    file_name = url.rsplit('/')[-1]
    with open(file_name, mode='wb') as f:
        f.write(response.content)


if __name__ == '__main__':
    url_list = [
        'http://pic.bizhi360.com/bbpic/98/10798.jpg',
        'http://pic.bizhi360.com/bbpic/92/10792.jpg',
        'http://pic.bizhi360.com/bbpic/86/10386.jpg'
    ]
    
    tasks = [download_image(url) for url in url_list]
    # loop = asyncio.get_event_loop()
    # loop.run_until_complete(asyncio.wait(tasks))
    asyncio.run(asyncio.wait(tasks))


异步迭代器

什么是异步迭代器?

实现了__aiter__() 和 __anext__() 方法的对象。__aiter__() 必须返回一个awaitable对象。async for会处理异步迭代器的 __anext__()方法所返回的可等待对象,直到引发一个StopAsyncIteration异常。


什么是异步可迭代对象?

可在async for语句中被使用的对象。必须通过它的__aiter__()方法返回一个asynchronous iterator。

import asyncio


# 自定义异步迭代器
class Reader:
    def __init__(self):
        self.count = 0

    async def readline(self):
        # await asyncio.sleep(1)
        self.count += 1
        if self.count == 100:
            return None
        return self.count

    def __aiter__(self):
        return self

    async def __anext__(self):
        val = await self.readline()
        if val is None:
            raise StopAsyncIteration
        return val


async def func():
    obj = Reader()
    # 异步for循环必须在协程函数内执行,协程函数名称随意取名
    async for item in obj:
        print(item)


asyncio.run(func())


异步上下文管理器

此种现象通过定义__aenter__()和__axeit__()方法来对async with语句中的环境进行控制。

import asyncio


class AsyncContextManager:
    def __init__(self, conn=None):
        self.conn = conn

    async def do_something(self):
        # 异步操作数据库
        return 'crud'

    async def __aenter__(self):
        # 异步连接数据库
        self.conn = await asyncio.sleep(1)
        return self

    async def __aexit__(self, exc_type, exc_val, exc_tb):
        # 异步关闭数据库连接
        await asyncio.sleep(1)


async def func():
    # 上下文管理器处理也需要在协程函数中运行
    async with AsyncContextManager() as f:
        result = await f.do_something()
        print(result)


asyncio.run(func())


uvloop

是asyncio的事件循环的替代方案。

uvloop事件循环的执行效率比asyncio默认的事件循环的效率高。

# pip install uvloop

import asyncio
import uvloop

# 设置事件循环为uvloop
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())

# 编写的asyncio代码与之前一致

# 内部事件循环会自动切到uvloop
asyncio.run(...)


实战案例

异步操作 Redis

在使用python代码操作redis时,像连接、读取/写入、断开都是IO操作。

pip install aioredis==1.3.1

案例1:

import asyncio
import aioredis


async def execute(address):
    print('开始执行: ', address)
    # 网络IO 创建redis连接
    redis = await aioredis.create_redis(address)
    # 网络IO 在redis中设置哈希值
    await redis.hmset_dict('car', key1=1, key2=2, key3=3)
    # 网络IO 获取redis中的值
    result = await redis.hgetall('car', encoding='utf-8')
    print(result)
    redis.close()

    # 网络IO 关闭redis连接
    await redis.wait_closed()
    print('结束...')


asyncio.run(execute('redis://127.0.0.1:6379/0'))


案例2:

import asyncio
import aioredis


async def execute(address, password):
    print('开始执行: ', address)
    # 网络IO 创建redis连接
    redis = await aioredis.create_redis_pool(address, password=password)
    # 网络IO 在redis中设置哈希值
    await redis.hmset_dict('car', key1=1, key2=2, key3=3)
    # 网络IO 获取redis中的值
    result = await redis.hgetall('car', encoding='utf-8')
    print(result)
    redis.close()

    # 网络IO 关闭redis连接
    await redis.wait_closed()
    print('结束...')

task_list = [
    execute('redis://localhost:6379/0', None),
    execute('redis://localhost:6379/1', None)
]


asyncio.run(asyncio.wait(task_list))


异步 MySQL

pip install aiomysql

案例1:

import asyncio
import aiomysql


async def execute():
    # 网络IO操作 连接mysql
    conn = await aiomysql.connect(host='127.0.0.1', port=3306, user='root', password='root', db='mysql')

    # 网络IO操作 创建游标
    cursor = await conn.cursor()

    # 网络IO操作 执行sql
    await cursor.execute('select host,user from user')

    # 网络IO操作 获取sql结果
    result = await cursor.fetchall()
    print(result)

    # 网络IO操作
    await cursor.close()
    conn.close()


asyncio.run(execute())


案例2:

import asyncio
import aiomysql


async def execute(host, password):
    print('开始连接:', host)
    # 网络IO操作 连接mysql
    conn = await aiomysql.connect(host=host, port=3306, user='root', password=password, db='mysql')

    # 网络IO操作 创建游标
    cursor = await conn.cursor()

    # 网络IO操作 执行sql
    await cursor.execute('select host,user from user')

    # 网络IO操作 获取sql结果
    result = await cursor.fetchall()
    print(result)

    # 网络IO操作
    await cursor.close()
    conn.close()
    print('结束:', host)


task_list = [
    execute('localhost', 'root'),
    execute('localhost', 'root')
]


asyncio.run(asyncio.wait(task_list))


FastAPI框架

pip install uvicorn
pip install fastapi


示例:

import uvicorn
import asyncio
import aioredis
from fastapi import FastAPI

app = FastAPI()

# 创建redis连接池
REDIS_POOL = aioredis.ConnectionsPool('redis://localhost:6379', password=None, minsize=1, maxsize=10)


@app.get('/')
def index():
    # 普通视图函数
    return {'message': 'hello world'}


@app.get('/red')
async def red():
    # 异步视图
    print('请求来了...')
    await asyncio.sleep(3)

    # 获取连接池中的一个链接
    conn = await REDIS_POOL.acquire()
    redis = aioredis.Redis(conn)

    # 设置值
    await redis.hmset_dict('car_fastApi', key1=1, key2=2, key3=3)

    # 读取值
    result = await redis.hgetall('car_fastApi', encoding='utf-8')
    print(result)

    # 将单个连接归还给连接池
    REDIS_POOL.release(conn)

    return result


if __name__ == '__main__':
    # fastapi_test为当前这个脚本文件的名称
    uvicorn.run("fastapi_test:app", host='127.0.0.1', port=5000, log_level='info')


爬虫

import asyncio
import aiohttp


async def fetch(session, url):
    print('发送请求: ', url)
    async with session.get(url, verify_ssl=False) as response:
        text = await response.text()
        print('结果: ', url, len(text))


async def main():
    async with aiohttp.ClientSession() as session:
        url_list = [
            'https://python.org',
            'https://www.baidu.com',
        ]

        tasks = [asyncio.create_task(fetch(session, url)) for url in url_list]
        await asyncio.wait(tasks)


if __name__ == '__main__':
    asyncio.run(main())

相关推荐

redis的八种使用场景

前言:redis是我们工作开发中,经常要打交道的,下面对redis的使用场景做总结介绍也是对redis举报的功能做梳理。缓存Redis最常见的用途是作为缓存,用于加速应用程序的响应速度。...

基于Redis的3种分布式ID生成策略

在分布式系统设计中,全局唯一ID是一个基础而关键的组件。随着业务规模扩大和系统架构向微服务演进,传统的单机自增ID已无法满足需求。高并发、高可用的分布式ID生成方案成为构建可靠分布式系统的必要条件。R...

基于OpenWrt系统路由器的模式切换与网页设计

摘要:目前商用WiFi路由器已应用到多个领域,商家通过给用户提供一个稳定免费WiFi热点达到吸引客户、提升服务的目标。传统路由器自带的Luci界面提供了工厂模式的Web界面,用户可通过该界面配置路...

这篇文章教你看明白 nginx-ingress 控制器

主机nginx一般nginx做主机反向代理(网关)有以下配置...

如何用redis实现注册中心

一句话总结使用Redis实现注册中心:服务注册...

爱可可老师24小时热门分享(2020.5.10)

No1.看自己以前写的代码是种什么体验?No2.DooM-chip!国外网友SylvainLefebvre自制的无CPU、无操作码、无指令计数器...No3.我认为CS学位可以更好,如...

Apportable:拯救程序员,IOS一秒变安卓

摘要:还在为了跨平台使用cocos2d-x吗,拯救objc程序员的奇葩来了,ApportableSDK:FreeAndroidsupportforcocos2d-iPhone。App...

JAVA实现超买超卖方案汇总,那个最适合你,一篇文章彻底讲透

以下是几种Java实现超买超卖问题的核心解决方案及代码示例,针对高并发场景下的库存扣减问题:方案一:Redis原子操作+Lua脚本(推荐)//使用Redis+Lua保证原子性publicbo...

3月26日更新 快速施法自动施法可独立设置

2016年3月26日DOTA2有一个79.6MB的更新主要是针对自动施法和快速施法的调整本来内容不多不少朋友都有自动施法和快速施法的困扰英文更新日志一些视觉BUG修复就不翻译了主要翻译自动施...

Redis 是如何提供服务的

在刚刚接触Redis的时候,最想要知道的是一个’setnameJhon’命令到达Redis服务器的时候,它是如何返回’OK’的?里面命令处理的流程如何,具体细节怎么样?你一定有问过自己...

lua _G、_VERSION使用

到这里我们已经把lua基础库中的函数介绍完了,除了函数外基础库中还有两个常量,一个是_G,另一个是_VERSION。_G是基础库本身,指向自己,这个变量很有意思,可以无限引用自己,最后得到的还是自己,...

China's top diplomat to chair third China-Pacific Island countries foreign ministers' meeting

BEIJING,May21(Xinhua)--ChineseForeignMinisterWangYi,alsoamemberofthePoliticalBureau...

移动工作交流工具Lua推出Insights数据分析产品

Lua是一个适用于各种职业人士的移动交流平台,它在今天推出了一项叫做Insights的全新功能。Insights是一个数据平台,客户可以在上面实时看到员工之间的交流情况,并分析这些情况对公司发展的影响...

Redis 7新武器:用Redis Stack实现向量搜索的极限压测

当传统关系型数据库还在为向量相似度搜索的性能挣扎时,Redis7的RedisStack...

Nginx/OpenResty详解,Nginx Lua编程,重定向与内部子请求

重定向与内部子请求Nginx的rewrite指令不仅可以在Nginx内部的server、location之间进行跳转,还可以进行外部链接的重定向。通过ngx_lua模块的Lua函数除了能实现Nginx...