Redis Scan命令踩坑笔记 redis-cli scan
wptr33 2024-12-18 17:32 21 浏览
前记
大部分人在接触Redis时就都会了解到Redis是以单线程的形式处理用户命令,导致O(N)的命令有极大的几率会阻塞Redis,所以在使用Redis时需要放弃一些O(n)命令的使用,比如不要去使用KEYS命令而应该使用SCAN命令,然而SCAN命令也有一些坑。
1.踩到的坑
为了减少MySQL的压力,在部分变动比较少的表会通过Redis套上缓存,如下代码:
Python复制代码@cache(key_name="demo_system:user", expire=10)
def get_user(user_id: str) -> UserDict:
with conn.cursor() as cursor:
cursor.execute("SELECT * FROM user WHERE user_id=%s", (user_id, ))
return cursor.fetchone() or ()
这段代码中会有一个cache装饰器,它每次被调用时会把key_name与传入的参数绑定为一个Key,比如某次调用的参数user_id为10086时,生成的Key为demo_system:user:10086。 它在执行时会先去Redis检查一下该Key是否存在,如果存在就直接返回数据,如果不存在就进入get_user函数通过MySQL获取user_id为10086的数据,不过在返回数据10086的数据之前会先缓存到对应的Key中。
可见这个实现非常简单,也没有什么坑,但是当遇到需要按照模糊匹配批量删除缓存的需求时,问题也就跟着过来了,因为Redis本身并没有按照模糊匹配再批量删除的方法,只能先通过Redis的KEYS或者SCAN的模糊匹配查找一批Key,然后再通过DEL命令批量删除。 为了防止Redis阻塞,大都会选用SCAN来进行模糊匹配并通过DEL命令删除,使用起来也简单,代码如下:
Python复制代码def delete_cache_start_with(cache_name: str) -> None:
"""根据前缀删除批量缓存"""
cache_name += "*"
cache_name_list = [item for item in redis.scan_iter(cache_name)]
if cache_name_list:
redis.delete(*cache_name_list)
delete_cache_start_with("demo_system:user")
通过这段代码就可以批量删除与demo_system:user相关的Key了,在测试环境验证基本也不会出现问题,但是当上到生产环境时就会发现拥有批量删除逻辑的接口在某些情况下它的响应时长会变得很长,比如我在排查某个业务时看到的Jaeger数据如下图:
图中展示的是本次调用执行了多次SCAN命令,同时通过捕获的命令也可以知道SCAN的索引是一直在变的,而且不会重复,这意味着SCAN的执行逻辑是正常的,但是需要执行很多次才能获得最终的结果,所以导致接口的响应时长非常的长。
2.解决方案
当前的问题是当Redis的Key数量过多时,SCAN的扫描次数也变多了,导致服务需要向Redis发起多次IO交互,而每一次IO交互都需要一定的时间开销,最终导致接口响应时长变长, 所以解决这个问题的核心就变为在每次执行批量删除时尽量的减少SCAN命令次数(最终结果集不变的情况下)。
由于扫描次数是由SCAN命令中的COUNT大小和要扫描的Key总量这两个条件决定的,所以分别衍生出两套解决方案。
2.1.修改COUNT参数
如果代码中有大量依赖于SCAN命令且比较难更改的情况或者是代码中是使用了类似于django.core.cache的cache.delete_pattern封装函数,那么直接修改代码会非常麻烦,这时可以选择通过改大COUNT参数来减少SCAN命令的次数。
不过COUNT参数也不能太大,根据KeyDB中的描述在一个包含500万Key的Redis执行SCAN时,不同的COUNT参数与通过SCAN扫描所有Key的消耗时间的关系如下图:
通过图可以看到,当COUNT大于1000时,通过SCAN扫码所有Key的消耗时间变化已经不是很大,但是我们也需要考虑COUNT过大时可能会对Redis的负载性能有影响,所以我们需要针对自己使用的Redis服务进行压测后,选择最适合当前Redis服务的COUNT(一般建议在100-1000之间)。
2.2.创建一个存放缓存Key的Bucket
由于缓存的Key的数量远远小于业务Key的数量,如果能做到只扫描缓存的Key而不是所有Key,那么SCAN命令执行的次数就会少了很多很多。 而这个解决方案就是通过创建一个单独的Bucket来存放缓存的Key,然后在模糊匹配时只扫描Bucket中的Key,最后在执行删除时除了删除业务Key外还需要同时删除Bucket中的Key。至于这个实现这个Bucket的方案有很多种,比如进程中的内存里或者一个公有文件中,但是Bucket的最佳实现还得是Redis的SET。
这个方案的实现最好是基于Redis客户端库再封装一层统一的调用,比如上面示例的cache装饰器,这个装饰器的核心逻辑如下:
Python复制代码# 省去装饰的逻辑
def _cache(func: Callable, key: str) -> Any:
result: Any = redis.get(key)
if not result:
result = func()
redis.set(key, result)
return result
它会先判断key是否存在Redis中,如果存在就直接返回,不存在则调用函数获取结果,再把结果存入Redis后并返回。
在进行改造时,只需要先指定Bucket的Key名,然后在调用redis.set时把缓存的key存入到Bucket中,如下:
Python复制代码bucket_key: str = "demo_system:bucket"
def _cache(func: Callable, key: str) -> Any:
result: Any = redis.get(key)
if not result:
result = func()
redis.sadd(bucket_key, key) # <-- 新增语句,为了保持双写成功,建议使用pipe,否则一定要放在set之前
redis.set(key, result)
return result
然后删除的逻辑也需要修改,首先是把扫描Key从扫描Redis全局改为扫描Bucket,然后在删除Key时顺便把Key也从Bucket中移除,代码如下:
Python复制代码def delete_cache_start_with(cache_name: str) -> None:
"""根据前缀删除批量缓存"""
cache_name += "*"
cache_name_list = [item for item in redis.sscan_iter(bucket_key, match=cache_name)] # <--修改点
if cache_name_list:
redis.delete(*cache_name_list)
redis.srem(*cache_name_list) # <--同样建议使用pipe,如果没有则必须放在delete后
delete_cache_start_with("demo_system:user")
这样一来就改造完成了,经过在线上跑了一段时间后,所有接口的响应时间并不会受删除Key的逻辑影响。
3.其他注意点
在翻阅Redis关于SCAN命令的文档后发现有如下这一段描述:
Scan guarantees The SCAN command, and the other commands in the SCAN family, are able to provide to the user a set of guarantees associated to full iterations.
A full iteration always retrieves all the elements that were present in the collection from the start to the end of a full iteration. This means that if a given element is inside the collection when an iteration is started, and is still there when an iteration terminates, then at some point SCAN returned it to the user. A full iteration never returns any element that was NOT present in the collection from the start to the end of a full iteration. So if an element was removed before the start of an iteration, and is never added back to the collection for all the time an iteration lasts, SCAN ensures that this element will never be returned. H A given element may be returned multiple times. It is up to the application to handle the case of duplicated elements, for example only using the returned elements in order to perform operations that are safe when re-applied multiple times.
通过描述可以发现SCAN命令会保证扫描出在遍历开始之前就已经存在Redis的值,但是如果有一个值是在遍历开始之后才加入的,那么SCAN无法保证一定能被扫描出来,不过对于当前的删除缓存Key场景并没有什么影响。此外SCAN多次扫描的结果可能有重复的,需要我们在程序中把扫码的结果重新整理并去重。
作者:so1n
链接:https://juejin.cn/post/7250382724878975033
相关推荐
- MYSQL术语介绍:dynamic row format
-
InnoDB行格式。因为可变长度列值存储在保存行数据的页面之外,所以对于包含大对象的行非常有效。由于通常不会访问大字段来评估查询条件,因此不会经常将它们带入缓冲池,从而减少I/O操作并更好地利用缓...
- 阿里面试:MySQL Binlog有哪些格式?底层原理?优缺点?
-
binlog的格式也有三种:STATEMENT、ROW、MIXED,下面我详解binlog三种模式@mikechenStatement模式Statement模式:是基于SQL语句的复制(statem...
- Mysql日期格式化显示“年月”(mysql日期格式化)
-
数据库中存储格式为DATE,如果只显示年月,就需要将日期数据格式化。下面通过两种方式对其格式化显示:...
- 看完这篇还不懂 MySQL 主从复制,可以回家躺平了
-
我们在平时工作中,使用最多的数据库就是MySQL...
- MySQL binlog format (Statement、Row、Mixed) 二进制日志格式
-
MySQL的binlog日志作用是用来记录MySQL内部增删改查等对MySQL数据库有更新的内容的记录(对数据库的改动),对数据库的查询select或show等不会被binlog日志记录,主要用于数据...
- 性能优化-界面卡顿和丢帧(Choreographer 代码检测)
-
标签:ChoreographerUI卡顿UI丢帧本文将介绍3个知识点:获取系统UI刷新频率检测UI丢帧和卡顿输出UI丢帧和卡顿堆栈信息...
- 使用Java分析器优化代码性能,解决OOM问题
-
背景最近我一直在做性能优化,对一个单机应用做性能优化。主要是涉及到解析和导入导出相关的业务。大致说一下这个单机应用干嘛的:制作票样,类似于答题卡。发给某些人填写,然后通过单机python图像识别存到数...
- 面试必问的HashCode技术内幕(hashmap面试题原理)
-
3hashCode的内幕tips:面试常问/常用/常出错...
- 实战Netty!基于私有协议,怎样快速开发网络通信服务
-
私有协议编写目的本文档用于描述边缘计算单元(以下简称边缘盒)与上位机配置软件(以下简称上位机)之间进行的数据交互通信协议。通信方式...
- C#工控上位机系列(2)- 串口通信/监控工具
-
工控机通常都带有很多串口(10个),而且可以通过Moxa卡扩展串口.但Moxa的串口和电脑自带的串口还是有点区别C#里面没区别,但之前VB6的MSComm控件有时就会有不一样的地方.支持串口通讯...
- Java加密与解密之消息摘要算法1(消息摘要(hash函数编码法),又称数字指纹 ( ))
-
消息摘要算法有3大类,分别是:MD、SHA、MAC,通常用于数据完整性的验证。MD:MessageDigest消息摘要算法。包括:MD2,MD4,MD53种算法。SHA:SecureHashA...
- zookeeper的Leader选举源码解析(zookeeper角色选举角色包括)
-
作者:京东物流梁吉超zookeeper是一个分布式服务框架,主要解决分布式应用中常见的多种数据问题,例如集群管理,状态同步等。为解决这些问题zookeeper需要Leader选举进行保障数据的强一致...
- Java 中五种最常见加密算法:原理、应用与代码实现
-
引言在现代软件开发中,数据安全至关重要。无论是用户密码存储、敏感信息传输,还是系统间的通信,加密技术都扮演着核心角色。Java作为广泛使用的编程语言,通过javax.crypto和java.s...
- 干货|6招学会调用NFC的各个功能(调出nfc)
-
现在越来越多的手机支持NFC功能,这种轻松、安全、迅速的通信的无线连接技术,能够让我们的手机替代门禁卡、公交卡、银行卡甚至是车钥匙,那么怎么让APP中能够调用这个功能呢?今天小编就来教给大家!...
- 一文读懂流媒体协议之RTP 协议(rtp流媒体服务器)
-
一、简介1.1RTPRTP全名是Real-timeTransportProtocol(实时传输协议)。它是IETF提出的一个标准,对应的RFC文档为RFC3550(RFC1889为其过期版本)。...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
面试官:git pull是哪两个指令的组合?
-
git 执行pull错误如何撤销 git pull fail
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
-
- MYSQL术语介绍:dynamic row format
- 阿里面试:MySQL Binlog有哪些格式?底层原理?优缺点?
- Mysql日期格式化显示“年月”(mysql日期格式化)
- 看完这篇还不懂 MySQL 主从复制,可以回家躺平了
- MySQL binlog format (Statement、Row、Mixed) 二进制日志格式
- 性能优化-界面卡顿和丢帧(Choreographer 代码检测)
- 使用Java分析器优化代码性能,解决OOM问题
- 面试必问的HashCode技术内幕(hashmap面试题原理)
- 实战Netty!基于私有协议,怎样快速开发网络通信服务
- C#工控上位机系列(2)- 串口通信/监控工具
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)