百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

从 Stream 到 Kotlin 再到 SPL

wptr33 2024-12-14 15:32 25 浏览

JAVA开发中经常会遇到不方便使用数据库,但又要进行结构化数据计算的场景。JAVA早期没有提供相关类库,即使排序、分组这种基本计算也要硬写代码,开发效率很低。后来JAVA8推出了Stream库,凭借Lambda表达式、链式编程风格、集合函数,才终于解决了结构化数据计算类库从无到有的问题。

Stream可以简化结构化数据的计算

比如排序:

Stream<Order> result=Orders
.sorted((sAmount1,sAmount2)->Double.compare(sAmount1.Amount,sAmount2.Amount))
.sorted((sClient1,sClient2)->CharSequence.compare(sClient2.Client,sClient1.Client));

上面代码中的sorted是集合函数,可方便地进行排序。"(参数)->函数体"的写法即Lambda表达式,可以简化匿名函数的定义。两个sorted函数连在一起用属于链式编程风格,可以使多步骤计算变得直观。

Stream计算能力还不够强

仍然以上面的排序为例,sorted函数只需要知道排序字段和顺序/逆序就够了,参考SQL的写法"…from Orders order by Client desc, Amount",但实际上还要额外输入排序字段的数据类型。顺序/逆序用asc/desc(或+/-)等符号就可以简单表示了,但这里却要用compare函数。另外,实际要排序的字段顺序和代码写出来的顺序是相反的,有些反直觉。

再比如分组汇总:

Calendar cal=Calendar.getInstance();
Map<Object, DoubleSummaryStatistics> c=Orders.collect(Collectors.groupingBy(
        r->{
            cal.setTime(r.OrderDate);
            return cal.get(Calendar.YEAR)+"_"+r.SellerId;
            },
            Collectors.summarizingDouble(r->{
                return r.Amount;
            })
        )
);
    for(Object sellerid:c.keySet()){
        DoubleSummaryStatistics r =c.get(sellerid);
        String year_sellerid[]=((String)sellerid).split("_");
        System.out.println("group is (year):"+year_sellerid[0]+"\t (sellerid):"+year_sellerid[1]+"\t sum is:"+r.getSum()+"\t count is:"+r.getCount());
    }

上面代码中,所有出现字段名的地方,都要先写上表名,即"表名.字段名",而不能像SQL那样省略表名。匿名函数语法复杂,随着代码量的增加,复杂度迅速增长。两个匿名函数形成嵌套,代码更难解读。实现一个分组汇总功能要用多个函数和类,包括groupingBy、collect、Collectors、summarizingDouble、DoubleSummaryStatistics等,学习成本不低。分组汇总的结果是Map,而不是结构化数据类型,如果要继续计算,通常要定义新的结构化数据类型,并进行转换类型,处理过程很繁琐。两个分组字段在结构化数据计算中很常见,但函数grouping只支持一个分组变量,为了让一个变量代表两个字段,就要采取一些变通技巧,比如新建一个两字段的结构化数据类型,或者把两个字段用下划线拼起来,这让代码变得更加繁琐。

Stream计算能力不足,原因在于其基础语言JAVA是编译型语言,无法提供专业的结构化数据对象,缺少来自底层的有力支持。

JAVA是编译型语言,返回值的结构必须事先定义,遇到较多的中间步骤时,就要定义多个数据结构,这不仅让代码变得繁琐,还导致参数处理不灵活,要用一套复杂的规则来实现匿名语法。解释性语言则天然支持动态结构,还可以方便地将参数表达式指定为值参数或函数参数,提供更简单的匿名函数。

在这种情况下,Kotlin应运而生。Kotlin是基于JAVA的现代开发语言,所谓现代,重点体现在对JAVA语法尤其是Stream的改进上,即Lambda表达式更加简洁,集合函数更加丰富。

Kotlin计算能力强于Stream

比如排序:

var resutl=Orders.sortedBy{it.Amount}.sortedByDescending{it.Client}

上面代码无须指明排序字段的数据类型,无须用函数表达顺序/逆序,直接引用it作为匿名函数的默认参数,而不是刻意定义,整体比Stream简短不少。

Kotlin改进并不大,计算能力仍然不足


仍然以排序为例,Kotlin虽然提供了it这个默认参数,但理论上只要知道字段名就够了,没必要带上表名(it)。排序函数只能对一个字段进行排序,不能动态接收多个字段。

再比如分组汇总:

data class Grp(var OrderYear:Int,var SellerId:Int)
data class Agg(var sumAmount: Double,var rowCount:Int)
var result=Orders.groupingBy{Grp(it.OrderDate.year+1900,it.SellerId)}
    .fold(Agg(0.0,0),{
        acc, elem -> Agg(acc.sumAmount + elem.Amount,acc.rowCount+1)
    })
.toSortedMap(compareBy<Grp> { it. OrderYear}.thenBy { it. SellerId})
result.forEach{println("group fields:${it.key.OrderYear}\t${it.key.SellerId}\t aggregate fields:${it.value.sumAmount}\t${it.value.rowCount}") }

上面代码中,一个分组汇总的动作,需要用到多个函数,包括复杂的嵌套函数。用到字段的地方要带上表名。分组汇总的结果不是结构化数据类型。要事先定义中间结果的数据结构。

如果继续考察集合、关联等更多的计算,就会发现同样的规律:Kotlin代码的确比Stream短一些,但大都是无关紧要的量变,并未发生深刻的质变,该有的步骤一个不少。

Kotlin也不支持动态数据结构,无法提供专业的结构化数据对象,难以真正简化Lambda语法,无法脱离表名直接引用字段,无法直接支持动态的多字段计算(比如多字段排序)。

esProc SPL的出现,将会彻底改观JAVA生态下结构化数据处理的困境。

esProc SPL是JVM下的开源结构化数据计算语言,提供了专业的结构化数据对象,内置丰富的计算函数,灵活简洁的语法,易于集成的JDBC接口,擅长简化复杂计算。

SPL内置丰富的计算函数实现基础计算

比如排序:=Orders.sort(-Client, Amount)

SPL无须指明排序字段的数据类型,无须用函数指明方向/逆序,使用字段时无须附带表名,一个函数就可以动态地对多个字段进行排序。

分组汇总:=Orders.groups(year(OrderDate),Client; sum(Amount),count(1))

上面的计算结果仍然是结构化数据对象,可以直接参与下一步计算。对双字段进行分组或汇总时,也不需要事先定义数据结构。整体代码没有多余的函数,sum和count用法简洁易懂,甚至很难觉察这是嵌套的匿名函数。

更多计算也同样简单:

去重:=Orders.id(Client)

模糊查询:=Orders.select(Amount*Quantity>3000 && like(Client,"*S*"))

关联:=join(Orders:o,SellerId ; Employees:e,EId).groups(e.Dept; sum(o.Amount))

SPL提供了JDBC接口,可被JAVA代码无缝调用


Class.forName("com.esproc.jdbc.InternalDriver");
Connection connection =DriverManager.getConnection("jdbc:esproc:local://");
Statement statement = connection.createStatement();
String str="=T(\"D:/Orders.xls\"). Orders.groups(year(OrderDate),Client; sum(Amount))";
ResultSet result = statement.executeQuery(str);

SPL语法风格简洁灵活,具有强大的计算能力。


SPL可简化分步计算、有序计算、分组后计算等逻辑较复杂的计算,很多SQL/存储过程难以实现的计算,用SPL解决起来就很轻松。比如,找出销售额累计占到一半的前n个大客户,并按销售额从大到小排序:


A

B

1

/取数据

2

=A1.sort(amount:-1)

/销售额逆序排序

3

=A2.cumulate(amount)

/计算累计序列

4

=A3.m(-1)/2

/最后的累计即总额

5

=A3.pselect(~>=A4)

/超过一半的位置

6

=A2(to(A5))

/按位置取值

除了计算能力,SPL在系统架构、数据源、中间数据存储、计算性能上也有一些特有的优势,这些优势有助于SPL进行库外结构化数据计算。

SPL支持计算热切换和代码外置,可降低系统耦合性。


比如,将上面的SPL代码存为脚本文件,再在JAVA中以存储过程的形式调用文件名:

Class.forName("com.esproc.jdbc.InternalDriver");
Connection connection =DriverManager.getConnection("jdbc:esproc:local://");
Statement statement = connection.createStatement();
ResultSet result = statement.executeQuery("call getClient()");

SPL是解释型语言,修改后可直接运行,无须编译,不必重启JAVA服务。SPL代码外置于JAVA,通过文件名被调用,不依赖JAVA代码,耦合性低。

SPL支持多种数据源,可进行跨源计算和跨库计算。


SPL支持各类数据库,txt\csv\xls等文件,MongoDB、Hadoop、redis、ElasticSearch、Kafka、Cassandra等NoSQL,特别地,还支持WebService XML、Restful Json等多层数据:


A

1

=json(file("d:/Orders.json").read())

2

=json(A1).conj()

3

=A2.select(Amount>p_start && Amount<=p_end)

对文本文件和数据库进行跨源关联:


A

1

=T("Employees.csv")

2

=mysql1.cursor("select SellerId, Amount from Orders order by SellerId")

3

=joinx(A2:O,SellerId; A1:E,EId)

4

=A3.groups(E.Dept;sum(O.Amount))

SPL提供了自有存储格式,可临时或永久存储数据,并进行高性能计算。


SPL支持btx存储格式,适合暂存来自于低速数据源的数据,比如CSV:


A

B

1

=[T("d:/orders1.csv"), T("d:/orders2.csv")].merge@u()

/对记录做并集

2

file("d:/fast.btx").export@b(A1)

/写入集文件

btx体积小,读写速度快,可以像普通文本文件那样进行计算:

=T("D:/fast.btx").sort(Client,- Amount)

如果对btx进行有序存储,还能获得高计算性能,比如并行计算、二分查找。SPL还支持更高性能的ctx存储格式,支持压缩、列存、行存、分布式计算、大并发计算,适合持久存储大量数据,并进行高性能计算。

在数据库外的结构化数据计算方面,Stream做出了突破性的贡献;Kotlin加强了这种能力,但编译性语言的特性使它无法走得更远;要想彻底解决库外计算的难题,还需要SPL这种专业的结构化数据计算语言。


SPL下载地址:http://c.raqsoft.com.cn/article/1595816810031

SPL开源地址:https://github.com/SPLWare/esProc

相关推荐

redis的八种使用场景

前言:redis是我们工作开发中,经常要打交道的,下面对redis的使用场景做总结介绍也是对redis举报的功能做梳理。缓存Redis最常见的用途是作为缓存,用于加速应用程序的响应速度。...

基于Redis的3种分布式ID生成策略

在分布式系统设计中,全局唯一ID是一个基础而关键的组件。随着业务规模扩大和系统架构向微服务演进,传统的单机自增ID已无法满足需求。高并发、高可用的分布式ID生成方案成为构建可靠分布式系统的必要条件。R...

基于OpenWrt系统路由器的模式切换与网页设计

摘要:目前商用WiFi路由器已应用到多个领域,商家通过给用户提供一个稳定免费WiFi热点达到吸引客户、提升服务的目标。传统路由器自带的Luci界面提供了工厂模式的Web界面,用户可通过该界面配置路...

这篇文章教你看明白 nginx-ingress 控制器

主机nginx一般nginx做主机反向代理(网关)有以下配置...

如何用redis实现注册中心

一句话总结使用Redis实现注册中心:服务注册...

爱可可老师24小时热门分享(2020.5.10)

No1.看自己以前写的代码是种什么体验?No2.DooM-chip!国外网友SylvainLefebvre自制的无CPU、无操作码、无指令计数器...No3.我认为CS学位可以更好,如...

Apportable:拯救程序员,IOS一秒变安卓

摘要:还在为了跨平台使用cocos2d-x吗,拯救objc程序员的奇葩来了,ApportableSDK:FreeAndroidsupportforcocos2d-iPhone。App...

JAVA实现超买超卖方案汇总,那个最适合你,一篇文章彻底讲透

以下是几种Java实现超买超卖问题的核心解决方案及代码示例,针对高并发场景下的库存扣减问题:方案一:Redis原子操作+Lua脚本(推荐)//使用Redis+Lua保证原子性publicbo...

3月26日更新 快速施法自动施法可独立设置

2016年3月26日DOTA2有一个79.6MB的更新主要是针对自动施法和快速施法的调整本来内容不多不少朋友都有自动施法和快速施法的困扰英文更新日志一些视觉BUG修复就不翻译了主要翻译自动施...

Redis 是如何提供服务的

在刚刚接触Redis的时候,最想要知道的是一个’setnameJhon’命令到达Redis服务器的时候,它是如何返回’OK’的?里面命令处理的流程如何,具体细节怎么样?你一定有问过自己...

lua _G、_VERSION使用

到这里我们已经把lua基础库中的函数介绍完了,除了函数外基础库中还有两个常量,一个是_G,另一个是_VERSION。_G是基础库本身,指向自己,这个变量很有意思,可以无限引用自己,最后得到的还是自己,...

China&#39;s top diplomat to chair third China-Pacific Island countries foreign ministers&#39; meeting

BEIJING,May21(Xinhua)--ChineseForeignMinisterWangYi,alsoamemberofthePoliticalBureau...

移动工作交流工具Lua推出Insights数据分析产品

Lua是一个适用于各种职业人士的移动交流平台,它在今天推出了一项叫做Insights的全新功能。Insights是一个数据平台,客户可以在上面实时看到员工之间的交流情况,并分析这些情况对公司发展的影响...

Redis 7新武器:用Redis Stack实现向量搜索的极限压测

当传统关系型数据库还在为向量相似度搜索的性能挣扎时,Redis7的RedisStack...

Nginx/OpenResty详解,Nginx Lua编程,重定向与内部子请求

重定向与内部子请求Nginx的rewrite指令不仅可以在Nginx内部的server、location之间进行跳转,还可以进行外部链接的重定向。通过ngx_lua模块的Lua函数除了能实现Nginx...