5大SQL数据清洗方法,覆盖90%的业务场景,再不收藏就晚了!
wptr33 2024-12-04 16:06 16 浏览
日常工作中,分析师会接到一些专项分析的需求,首先会搜索脑中的分析体系,根据业务需求构建相应的分析模型(不只是机器学习模型),根据模型填充相应维度表,这些维度特征表能够被使用的前提是假设已经清洗干净了。
但真正的原始表是混乱且包含了很多无用的冗余特征,所以能够根据原始数据清洗出相对干净的特征表就很重要。
前两天在Towards Data Science上看到一篇文章,讲的是用Pandas做数据清洗,作者将常用的清洗逻辑封装成了一个个的清洗函数。
https://towardsdatascience.com/the-simple-yet-practical-data-cleaning-codes-ad27c4ce0a38
而公司的业务数据一般存储在数据仓库里面,数据量很大,这时候用Pandas处理是不大方便的,更多时候用的是HiveSQL和MySql做处理。
基于此,我拓展了部分内容,写了一个常用数据清洗的SQL对比版,脚本很简单,重点是这些清洗场景和逻辑,大纲如图:
删除指定列、重命名列
场景:
多数情况并不是底表的所有特征(列)都对分析有用,这个时候就只需要抽取部分列,对于不用的那些列,可以删除。
重命名列可以避免有些列的命名过于冗长(比如Case When 语句),且有时候会根据不同的业务指标需求来命名。
删除列Python版:
df.drop(col_names, axis=1, inplace=True)
删除列SQL版:
1、select col_names from Table_Name
2、alter table tableName drop column columnName
重命名列Python版:
df.rename(index={'row1':'A'},columns ={'col1':'B'})
重命名列SQL版:
select col_names as col_name_B from Table_Name
因为一般情况下是没有删除的权限(可以构建临时表),反向思考,删除的另一个逻辑是选定指定列(Select)。
重复值、缺失值处理
场景:比如某网站今天来了1000个人访问,但一个人一天中可以访问多次,那数据库中会记录用户访问的多条记录,而这时候如果想要找到今天访问这个网站的1000个人的ID并根据此做用户调研,需要去掉重复值给业务方去回访。
缺失值:NULL做运算逻辑时,返回的结果还是NULL,这可能就会出现一些脚本运行正确,但结果不对的BUG,此时需要将NULL值填充为指定值。
重复值处理Python版:
df.drop_duplicates()
重复值处理SQL版:
1、select distinct col_name from Table_Name
2、select col_name from Table_Name group bycol_name
缺失值处理Python版:
df.fillna(value = 0)
df1.combine_first(df2)
缺失值处理SQL版:
1、select ifnull(col_name,0) value from Table_Name
2、select coalesce(col_name,col_name_A,0) as value from Table_Name
3、select case when col_name is null then 0 else col_name end from Table_Name
替换字符串空格、清洗*%@等垃圾字符、字符串拼接、分隔等字符串处理
场景:理解用户行为的重要一项是去假设用户的心理,这会用到用户的反馈意见或一些用研的文本数据,这些文本数据一般会以字符串的形式存储在数据库中,但用户反馈的这些文本一般都会很乱,所以需要从这些脏乱的字符串中提取有用信息,就会需要用到文字符串处理函数。
字符串处理Python版:
## 1、空格处理
df[col_name] = df[col_name].str.lstrip()
## 2、*%d等垃圾符处理
df[col_name].replace(' .*', '', regex=True, inplace=True)
## 3、字符串分割
df[col_name].str.split('分割符')
## 4、字符串拼接
df[col_name].str.cat()
字符串处理SQL版:
## 1、空格处理
select ltrim(col_name) from Table_name
## 2、*%d等垃圾符处理
select regexp_replace(col_name,正则表达式) from Table_name
## 3、字符串分割
select split(col_name,'分割符') from Table_name
## 4、字符串拼接
select concat_ws(col_name,'拼接符') from Table_name
合并处理
场景:有时候你需要的特征存储在不同的表里,为便于清洗理解和操作,需要按照某些字段对这些表的数据进行合并组合成一张新的表,这样就会用到连接等方法。
合并处理Python版:
左右合并
1、pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True,
suffixes=('_x', '_y'), copy=True, indicator=False,
validate=None)
2、pd.concat([df1,df2])
上下合并
df1.append(df2, ignore_index=True, sort=False)
合并处理SQL版:
左右合并
select A.*,B.* from Table_a A join Table_b B on A.id = B.id
select A.* from Table_a A left join Table_b B on A.id = B.id
上下合并
## Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
## Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
select A.* from Table_a A
union
select B.* from Table_b B
# Union 因为会将各查询子集的记录做比较,故比起Union All ,通常速度都会慢上许多。一般来说,如果使用Union All能满足要求的话,务必使用Union All。
窗口函数的分组排序
场景:假如现在你是某宝的分析师,要分析今年不同店的不同品类销售量情况,需要找到那些销量较好的品类,并在第二年中加大曝光,这个时候你就需要将不同店里不同品类进行分组,并且按销量进行排序,以便查找到每家店销售较好的品类。
Demo数据如上,一共a,b,c三家店铺,卖了不同品类商品,销量对应如上,要找到每家店卖的最多的商品。
窗口分组Python版:
df['Rank'] = df.groupby(by=['Sale_store'])['Sale_Num'].transform(lambda x: x.rank(ascending=False))
窗口分组SQL版:
select
*
from
(
Select
*,
row_number() over(partition by Sale_store order by Sale_Num desc) rk
from
table_name
) b where b.rk = 1
可以很清晰的看到,a店铺卖的最火的是蔬菜,c店铺卖的最火的是鸡肉,b店铺?
嗯,b店铺很不错,卖了888份宝器狗。
总结,上面的内容核心是掌握这些数据清洗的应用场景,这些场景几乎可以涵盖90%的数据分析前数据清洗的内容。而对于分析模型来说,SQL和Python都是工具,如果熟悉SQL,是能够更快速、方便的将特征清洗用SQL实现。
转载自公众号爱数据LoveData
- 上一篇:MySQL-计算直播间人气值
- 下一篇:数仓/数开面试题真题总结(二)
相关推荐
- 突然崩了!很多人以为电脑坏了,腾讯紧急回应
-
今天(24日)上午,多名网友反应,收到QQ遇到错误的消息,#QQ崩了#登上热搜。有网友表示:“一直在重新登录,以为是电脑的问题”@腾讯QQ发微博致歉:今天11点左右,有少量用户使用桌面QQ时出现报错...
- Excel八大常见错误值全解析,从此告别乱码烦恼~
-
我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!——首发于微信号:桃大喵学习记日常工作中很多小伙伴经常被Excel报错困扰,#N/A、#VALUE!、#REF!...这些...
- Excel中#NAME?错误详解,新手必看!
-
你是不是在输入函数时,突然看到#NAME?报错,完全不懂哪里出问题?本篇小红书文章,一次讲清楚【#NAME?】错误的4大常见原因+对应解决方法!什么是#NAME?错误?当Excel...
- Rust错误处理秒变简单!anyhow和thiserror就像你的贴心小助手
-
导语:遇到Rust错误提示就像看天书?别慌!anyhow和thiserror就像翻译官+小秘书组合,把混乱的错误信息变成人话,还能帮你记录出错现场!一、错误处理为什么烦人?(就像迷路没导航)...
- Excel中#DIV/0!错误详解,新手避坑指南
-
在用Excel做计算时,常常会遇到#DIV/0!报错,特别是涉及除法的时候。这篇文章帮你搞懂出现这个错误的原因,附上实用的解决方法什么是#DIV/0!错误?#DIV/0!=除数是0...
- Excel中#VALUE!错误详解,新手秒懂!
-
你是不是经常在Excel中遇到#VALUE!报错,却不知道为什么?今天这篇小红书文章,一次性讲清楚【#VALUE!】的出现原因+解决方法!什么是#VALUE!错误?#VALUE!是...
- 30天学会Python编程:24. Python设计模式与架构
-
24.1设计模式基础24.1.1设计模式分类24.1.2SOLID原则...
- Python学不会来打我(25)函数参数传递详解:值传递?引用传递?
-
在Python编程中,函数参数的传递机制...
- 30天学会Python编程:20. Python网络爬虫简介
-
20.1网络爬虫基础20.1.1爬虫定义与原理20.1.2法律与道德规范表19-1爬虫合法性要点...
- 「ELK」elastalert 日志告警(elk日志平台)
-
一、环境系统:centos7elk版本:7.6.21.1ElastAlert工作原理...
- 让你的Python代码更易读:7个提升函数可读性的实用技巧
-
如果你正在阅读这篇文章,很可能你已经用Python编程有一段时间了。今天,让我们聊聊可以提升你编程水平的一件事:编写易读的函数。...
- Python常见模块机os、sys、pickle、json、time用法
-
1.os模块:提供与操作系统交互的功能。importos#获取当前工作目录current_dir=os.getcwd()#创建新目录os.mkdir("new_direc...
- 当心!Python中的这个高效功能,可能让你的代码“裸奔”?
-
如果你经常用Python,一定对F-strings不陌生——它简洁、高效,一行代码就能让字符串和变量无缝拼接,堪称“代码美颜神器”。但你知道吗?这个看似人畜无害的功能,如果使用不当,可能会让你的程序“...
- xmltodict,一个有趣的 Python 库!
-
大家好,今天为大家分享一个有趣的Python库-xmltodict。...
- 如何用Python写一个自动备份脚本(备份列表python)
-
今天想整个自动备份脚本,用到schedule模块,这个模块是三方库,所有我们就要安装下,没有的模块,显示的颜色就不一样,不同编辑工具显示颜色不一样,这里是vs显示灰白色吧。...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
面试官:git pull是哪两个指令的组合?
-
git 执行pull错误如何撤销 git pull fail
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)