傻傻分不清楚的点积与矩阵乘法 Part3
wptr33 2025-09-01 15:50 9 浏览
作者:Minkyung Kang
译者:知源觅流
原文链接:
https://github.com/mkang32/python-basics/blob/master/numpy/dot_vs_multiply_vs_matmul_vs_at.ipynb
3. NumPy数组有哪些可用的功能?
我们的目标是在 NumPy 中找到执行点积或矩阵乘法的最佳方法。我比较了三个不同类别中的五种不同选项:
- 元素乘法(element-wise multiplication):* 或 np.multiply 加上 np.sum
- 点积:np.dot
- 矩阵乘法:np.matmul, @
我们将根据向量/矩阵的维度来探讨不同的情况,并理解每种方法的优缺点(the pros and cons of each method)。要在接下来的部分中运行代码,我们首先需要导入 numpy。
import numpy as np
(1) 元素乘法:*和sum
首先,我们可以尝试将元素乘法作为基本方法来实现点积:将两个向量中的对应元素相乘,然后将所有输出值相加。这种方法的缺点是你需要分别进行乘法和加法运算,导致它比我们稍后将讨论的其他方法慢。
这是一个使用两个1-D数组计算点积的示例。
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
>>> a*b
array([ 4, 10, 18])
>>> sum(a*b)
32
>>> np.sum(a*b) #译者添加
32
让我们看看2-D数组矩阵乘法的示例。
c = np.array([[1, 2, 3], [4, 5, 6]])
d = np.array([1, 1, 1])
>>> c*d
array([[1, 2, 3],
[4, 5, 6]])
在这里,二维数组 c 的每一行都被视为矩阵的一个元素,并与第二个数组 d 进行逐元素相乘。如下所示。
如果我们想要的是矩阵乘法的话,结果应该是这样:
因此,为了得到想要的输出,你需要对初始输出应用 np.sum。请注意,你应该传递参数 axis=1,它会对同一行中的元素求和。否则,因为默认值是axis=None,它对数组中的所有元素求和(译者订)。(译者注:axis=0表示跨行(Y轴)的方向,axis=1表示跨列(X轴)的方向)
>>> np.sum(c*d, axis=1)
array([ 6, 15])
译者注:
你可能会问,为什么不用sum了呢?这是因为如果你继续用刚才用过的sum函数,就得不到想要的结果了。
>>> sum(c*d)
array([5, 7, 9])
此时,你可能被sum和np.sum绕晕了。从下面的简介可以看出,sum是Python内置的函数,用于求和,功能有限。np.sum是numpy提供的求和函数,功能相对强大。所以,一般建议用np.sum。
对sum的简介。
sum(iterable, /, start=0)
Return the sum of a 'start' value (default: 0) plus an iterable of numbers
对np.sum的简介。
sum(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
Sum of array elements over a given axis.
(2) 元素乘法:np.multiply和sum
np.multiply 和 * 基本上是一样的。它是NumPy的元素乘法版本,而不是Python的本地运算符。你需要 sum 函数求和才能得到最终的标量输出。
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
>>> np.multiply(a, b)
array([ 4, 10, 18])
>>> np.sum(np.multiply(a, b))
32
(3) 点积:np.dot
在Numpy中有一种更优雅和简单的方法来计算点积,它就是np.dot(a, b) 或 a.dot(b)。它可以同时处理元素乘法和求和。简单易用。
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
>>> np.dot(a, b)
32
然而,当它是一个更高维度的数组时,你需要小心。如果数组的维度为2-D或更高,请确保第一个数组的列数与第二个数组的行数相匹配。
a = np.array([[1, 2, 3]]) # shape (1, 3)
b = np.array([[4, 5, 6]]) # shape (1, 3)
>>> np.dot(a, b)
# ValueError: shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)
为了让上述示例运行,你需要转置第二个数组,以便形状对齐:(1, 3) x (3, 1)。请注意,这将返回形为(1, 1)的数组,这是一个2-D数组。
a = np.array([[1, 2, 3]]) # shape (1, 3)
b = np.array([[4, 5, 6]]) # shape (1, 3)
>>> np.dot(a, b.T)
array([[32]])
如果第二个数组是形状为(3,)的1-D数组,那么输出的数组也会是1-D数组。
a = np.array([[1, 2, 3]]) # shape (1, 3)
b = np.array([4, 5, 6]) # shape (3, )
>>> np.dot(a, b)
array([32])
还要注意输入数组的顺序。如果顺序相反,你会得到外积(outer product)而不是内积(inner product)(点积)。(译者注:一个行向量乘以一个列向量称作向量的内积,又叫作点积,结果是一个标量;一个列向量乘以一个行向量称作向量的外积,结果是一个矩阵)
a = np.array([[1, 2, 3]]) # shape (1, 3)
b = np.array([[4, 5, 6]]) # shape (1, 3)
>>> np.dot(a.T, b) # (3, 1) x (1, 3)
array([[ 4, 5, 6],
[ 8, 10, 12],
[12, 15, 18]])
那么np.dot方法也适用于2-D数组×2-D数组吗?现在让我们尝试一个2D x 2D的例子。
c = np.array([[1, 2, 3], [4, 5, 6]]) # shape (2, 3)
d = np.array([[1], [1], [1]]) # shape (3, 1)
>>> np.dot(c, d)
array([[ 6],
[15]])
它起作用了!即使它被称为点积,根据其定义,这表示输入是1-D向量,输出是标量,但它对2-D或更高维度的矩阵也起作用,就像它是矩阵乘法一样。上面例子的计算过程如下所示。
*或np.multiply是不支持这样计算的,所以np.dot绝对是一个改进。那么,我们应该把np.dot用于所有的点积和矩阵乘法吗?
从技术上讲,可以,但并不推荐使用np.dot进行矩阵乘法,因为“点积”这个名称有特定的含义,可能会让读者感到困惑,尤其是数学家!
此外,对于高维矩阵(3-D或更高),不推荐使用 np.dot,因为它的行为与普通矩阵乘法不同。我们将在本文的后面部分讨论这个问题。
因此,np.dot 既适用于点积也适用于矩阵乘法,但仅建议用于点积。
(4) 矩阵乘法:np.matmul
下一个选项是 np.matmul。它专为矩阵乘法而设计,名字也是由此得来(MATrix MULtiplication)。尽管名称说的是矩阵乘法,但它也适用于 1-D 数组,就像 np.dot 一样。下面让我们尝试一下之前测试 np.dot 的例子。可以看出,对于1-D和2-D数组,np.matmul 与 np.dot 的功能是一样的。
# 1D array
a = np.array([1, 2, 3]) # shape (1, 3)
b = np.array([4, 5, 6]) # shape (1, 3)
>>> np.matmul(a, b)
32
# 2D array with values in 1 axis
a = np.array([[1, 2, 3]]) # shape (1, 3)
b = np.array([[4, 5, 6]]) # shape (1, 3)
>>> np.dot(a, b.T)
array([[32]])
# 2D arrays
c = np.array([[1, 2, 3], [4, 5, 6]]) # shape (2, 3)
d = np.array([[1], [1], [1]]) # shape (3, 1)
>>> np.dot(c, d)
array([[ 6],
[15]])
太好了!因此,这意味着np.dot和np.matmul都可以完美地用于点积和矩阵乘法。然而,正如我们之前所说,建议使用np.dot进行点积运算,使用np.matmul进行2-D或更高维度的矩阵乘法。
(5 ) 矩阵乘法:@
最后一个选项来了!@是自Python 3.5以来引入的新运算符,其名称来自mATrices。它基本上与 np.matmul 相同,并旨在执行矩阵乘法。但是,如果我们已经有了完美的 np.matmul,为什么还需要新的中缀运算符呢?
向stdlib添加新运算符的主要动机是矩阵乘法是一个非常常见的运算,它应该拥有自己的中缀运算符。例如,运算符 // 远不如矩阵乘法常见,但仍拥有自己的中缀。要了解此添加的背景,请查看PEP 465 (
https://www.python.org/dev/peps/pep-0465/)。
# 1D array
a = np.array([1, 2, 3]) # shape (1, 3)
b = np.array([4, 5, 6]) # shape (1, 3)
>>> a @ b
32
# 2D array with values in 1 axis
a = np.array([[1, 2, 3]]) # shape (1, 3)
b = np.array([[4, 5, 6]]) # shape (1, 3)
>>> a @ b.T
array([[32]])
# 2D arrays
c = np.array([[1, 2, 3], [4, 5, 6]]) # shape: (2, 3)
d = np.array([[1], [1], [1]]) # shape: (3, 1)
>>> c @ d
array([[ 6],
[15]])
因此,@ 的工作原理和 np.matmul 完全一样。但是在 np.matmul 和@ 之间应该使用哪一个呢?尽管这是你的偏好,但在代码中 @ 看起来比np.matmul 更干净。例如,如果你想对三个不同的矩阵 x,y,z 执行矩阵乘法。那么下面是不同的方式:
# `np.matmul` version
np.matmul(np.matmul(x, y), z)
# `@` version
x @ y @ z
如你所见,@ 操作符更为简洁、易读。然而,由于该操作符仅在Python 3.5及以上版本可用,如果你使用的是更早的Python版本,你必须使用np.matmul。
荟萃知识,滋养你我。
相关推荐
- 如何在Linux系统中安装Docker?_如何在Linux系统中安装软件
-
在这篇博客中,我将引导您通过简单的步骤完成安装Docker的过程,安装docker只是小菜一碟,你只需要运行几条命令就大功告成了!...
- 我用Docker安装FastDFS,再也不用头疼那些错误提示了
-
在这里插入图片描述FastDFS的安装我们还是通过Docker来安装实现吧,直接在Linux上还装还是比较繁琐的,但就学习而言Docker安装还是非常高效的。Docker环境请自行安装哦,不清楚的...
- 01背包问题的js解决方式_背包算法java
-
如果你有兴趣看这个相信你已经对背包问题有所了解,所以关于背包问题的描述,我就不写了。...
- 净现值函数_净现值函数名词解释
-
此页面特定于Office2010的VisualBasicforApplications(VBA)语言参考。返回一个Double,指定基于一系列定期现金流(付款和收款)和贴现率的投资的...
- Excel 数据分组双利器:GROUPBY 与 FREQUENCY 函数详解
-
这是一篇关于Excel中GROUPBY和FREQUENCY函数的详细教学教程。这两个函数都用于数据分组统计,但它们的应用场景、功能和用法有显著不同。第一部分:强大的新函数——GROUP...
- 熬夜7天,我总结了JavaScript与ES的25个知识点
-
前言说起JavaScript,大家都知道是一门脚本语言。那么ES是什么鬼呢?ES全称ECMAScript,是JavaScript语言的国际标准。最近,我总结了25条JavaScript的基础特性相关...
- 傻傻分不清楚的点积与矩阵乘法 Part3
-
作者:MinkyungKang...
- Python中的数据导入与查询_python如何导入数据文件
-
适用场景...
- 10个JavaScript一行代码,解决90%的开发难题
-
在JavaScript开发过程中,我们经常会遇到一些看似复杂但实际上可以通过简洁的代码解决的问题。下面分享10个JavaScript一行代码技巧,解决日常开发中的常见难题。...
- 提高 PHP 代码质量的 36 计_php代码调试心得
-
1.不要使用相对路径常常会看到:require_once('../../lib/some_class.php');该方法有很多缺点:...
- PHP替换字符串关键词长词优先函数
-
如何实现phpstr_replace替换关键词,如何控制长词优先,也不难,我就写了个这样的函数。functionmyreplace($string,$replaces){...
- PHP 中数组是如何灵活支持多数据类型的?
-
hello,大家好,我是张张,「架构精进之路」公号作者。...
- 3分钟短文 | PHP判断null,别再 == 了,你真控制不住
-
引言PHP程序中很多地方会用到判断是否为空,比如字符串为空,数组为空,对象为空,或者其他数据类型为默认空值。今天我们说一下判断null的两种方法的区别。一般可以使用is_null函数,判断变...
- C#基础:ref 参数_c# ref和out参数的区别
-
例在下面,我们定义了ref方法的语法。ref方法具有retrun类型,例如int、float或string,以及一个methodName,它可以是方法的任何合适名称,我们定义了参数...
- 「C#.NET 拾遗补漏」05:操作符的几个骚操作
-
阅读本文大概需要1分钟。大家好,这是极客精神【C#.NET拾遗补漏】专辑的第5篇文章,今天要讲的内容是操作符。操作符的英文是Operator,在数值计算中习惯性的被叫作运算符,所以在中文的...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
程序员的开源月刊《HelloGitHub》第 71 期
-
Java面试必考问题:什么是乐观锁与悲观锁
-
假如有100W个用户抢一张票,除了负载均衡办法,怎么支持高并发?
-
详细介绍一下Redis的Watch机制,可以利用Watch机制来做什么?
-
如何将AI助手接入微信(打开ai手机助手)
-
redission YYDS spring boot redission 使用
-
SparkSQL——DataFrame的创建与使用
-
Distinct vs Group By:MySQL 查询性能到底谁更强?
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)