百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

SQL left join 左表合并去重技巧总结

wptr33 2024-11-21 22:04 11 浏览

作者:ZhaoYingChao88

zyc88.blog.csdn.net/article/details/83002882

建表:

CREATE TABLE `table1` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(60) DEFAULT NULL,
 `age` varchar(200) DEFAULT NULL,
 `sponsor_id` varchar(20) DEFAULT NULL COMMENT '业务发起人',
 `gmt_create_user` int(11) NOT NULL COMMENT '创建人id',
 `gmt_create` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
 `gmt_modified` datetime DEFAULT NULL COMMENT '修改时间',
 `gmt_modified_user` int(11) DEFAULT NULL COMMENT '修改人id',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=12 DEFAULT CHARSET=utf8mb4 COMMENT='测试表1';

CREATE TABLE `table2` (
 `kid` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(60) DEFAULT NULL,
 `sponsor_id` varchar(20) DEFAULT NULL COMMENT '业务发起人',
 `type` int(11) NOT NULL COMMENT '创建人id',
 `gmt_create` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
 `gmt_modified` datetime DEFAULT NULL COMMENT '修改时间',
 `gmt_modified_user` int(11) DEFAULT NULL COMMENT '修改人id',
 PRIMARY KEY (`kid`)
) ENGINE=InnoDB AUTO_INCREMENT=12 DEFAULT CHARSET=utf8mb4 COMMENT='测试表2';

插入数据:

INSERT INTO `table1`(`id`, `name`, `age`, `sponsor_id`, `gmt_create_user`, `gmt_create`, `gmt_modified`, `gmt_modified_user`) VALUES (1, 't1', '11', '10', 1, '2018-10-10 20:34:03', NULL, NULL);
INSERT INTO `table1`(`id`, `name`, `age`, `sponsor_id`, `gmt_create_user`, `gmt_create`, `gmt_modified`, `gmt_modified_user`) VALUES (2, 't2', '12', '10', 2, '2018-10-10 20:34:03', NULL, NULL);
INSERT INTO `table1`(`id`, `name`, `age`, `sponsor_id`, `gmt_create_user`, `gmt_create`, `gmt_modified`, `gmt_modified_user`) VALUES (3, 't3', '13', '10', 3, '2018-10-10 20:34:03', NULL, NULL);
INSERT INTO `table1`(`id`, `name`, `age`, `sponsor_id`, `gmt_create_user`, `gmt_create`, `gmt_modified`, `gmt_modified_user`) VALUES (4, 't4', '14', '20', 4, '2018-10-10 20:34:03', NULL, NULL);

INSERT INTO `table2`(`kid`, `name`, `sponsor_id`, `type`, `gmt_create`, `gmt_modified`, `gmt_modified_user`) VALUES (1, 't1', '10', 1, '2018-10-10 20:38:10', NULL, NULL);
INSERT INTO `table2`(`kid`, `name`, `sponsor_id`, `type`, `gmt_create`, `gmt_modified`, `gmt_modified_user`) VALUES (2, 't2', '10', 1, '2018-10-10 20:38:10', NULL, NULL);
INSERT INTO `table2`(`kid`, `name`, `sponsor_id`, `type`, `gmt_create`, `gmt_modified`, `gmt_modified_user`) VALUES (3, 't3', '10', 1, '2018-10-10 20:38:10', NULL, NULL);
INSERT INTO `table2`(`kid`, `name`, `sponsor_id`, `type`, `gmt_create`, `gmt_modified`, `gmt_modified_user`) VALUES (4, 't4', '10', 1, '2018-10-10 20:38:10', NULL, NULL);
INSERT INTO `table2`(`kid`, `name`, `sponsor_id`, `type`, `gmt_create`, `gmt_modified`, `gmt_modified_user`) VALUES (5, 't5', '10', 1, '2018-10-10 20:38:10', NULL, NULL);
INSERT INTO `table2`(`kid`, `name`, `sponsor_id`, `type`, `gmt_create`, `gmt_modified`, `gmt_modified_user`) VALUES (6, 't6', '10', 1, '2018-10-10 20:38:10', NULL, NULL);
INSERT INTO `table2`(`kid`, `name`, `sponsor_id`, `type`, `gmt_create`, `gmt_modified`, `gmt_modified_user`) VALUES (7, 't7', '10', 2, '2018-10-10 20:38:10', NULL, NULL);
INSERT INTO `table2`(`kid`, `name`, `sponsor_id`, `type`, `gmt_create`, `gmt_modified`, `gmt_modified_user`) VALUES (8, 't1', '11', 1, '2018-10-10 20:38:10', NULL, NULL);

查询异常:

SELECT
 a.*,
 b.type 
FROM
 table1 a
 LEFT JOIN table2 b ON a.sponsor_id = b.sponsor_id 
WHERE
 b.type = 1 
 AND a.sponsor_id = 10;

简单说明问题出现的原因:

MySQL left join 语句格式为:A LEFT JOIN B ON 条件表达式

left join 是以A表为基础,A表即左表,B表即右表。

左表(A)的记录会全部显示,而右表(B)只会显示符合条件表达式的记录,如果在右表(B)中没有符合条件的记录,则记录不足的地方为NULL。

使用left join, A表与B表所显示的记录数为 1:1 或 1:0,A表的所有记录都会显示,B表只显示符合条件的记录。

但如果B表符合条件的记录数大于1条,就会出现1:n的情况,这样left join后的结果,记录数会多于A表的记录数。

所以解决办法 都是从一个出发点出发,使A表与B表所显示的记录数为 1:1对应关系。

解决方法:

使用非唯一标识的字段做关联

1 DISTINCT

select DISTINCT(id) from a left join b on a.id=b.aid DISTINCT查询结果是 第一个表唯一的数据 重复的结果没显示出来

SELECT
 DISTINCT(a.id), a.*,
 b.type 
FROM
 table1 a
 LEFT JOIN table2 b ON a.sponsor_id = b.sponsor_id 
WHERE
 b.type = 1 
 AND a.sponsor_id = 10;


SELECT
 DISTINCT a.*,
 b.type 
FROM
 table1 a
 LEFT JOIN table2 b ON a.sponsor_id = b.sponsor_id 
WHERE
 b.type = 1 
 AND a.sponsor_id = 10;

2 GROUP BY

select * from a left join(select id from b group by id) as b on a.id=b.aid拿出b表的一条数据关联 使A表与B表所显示的记录数为 1:1对应关系。

SELECT 
 a.*,
 b.type 
FROM
 table1 a
 LEFT JOIN ( SELECT * FROM table2 GROUP BY sponsor_id ) AS b ON a.sponsor_id = b.sponsor_id 
WHERE
 b.type = 1 
 AND a.sponsor_id = 10;

3 max取唯一

select * from a left join (select max(id) from table group by id) as b on a.id=b.aid 拿出b表的最后一条数据关联

SELECT
 a.*,
 b.type 
FROM
 table1 a
 LEFT JOIN ( SELECT MAX( kid ), type, sponsor_id FROM table2 GROUP BY sponsor_id ) AS b ON a.sponsor_id = b.sponsor_id 
WHERE
 b.type = 1 
 AND a.sponsor_id = 10;

4 IN巧用

SELECT
 a.* 
FROM
 table1 a 
WHERE
 a.sponsor_id IN ( SELECT sponsor_id FROM table2 WHERE type = 1 AND sponsor_id = 10 );


SELECT
 a.*,
 1 
FROM
 table1 a 
WHERE
 a.sponsor_id IN ( SELECT sponsor_id FROM table2 WHERE type = 1 AND sponsor_id = 10 );

相信对于熟悉SQL的人来说,LEFT JOIN非常简单,采用的时候也很多,但是有个问题还是需要注意一下。假如一个主表M有多个从表的话A B C …..的话,并且每个表都有筛选条件,那么把筛选条件放到哪里,就得注意喽。

(搜索公众号Java知音,回复“2021”,送你一份Java面试题宝典)

比如有个主表M,卡号是主键。

有个从表A,客户号、联系方式是联合主键,其中联系方式,1-座机,2-手机号码

如果想要查询所有卡号对应的手机号码两个字段,很简单,SQL语句如下:

SELECT A.卡号,B.手机号码
FROM A
LEFT JOIN B
  ON A.客户号=B.客户号
WHERE B.联系方式='2'

相信很多人这样写,估计实际工作中也会看到这样的语句,并不是说这么写一定会错误,实际SQL表达的思想一定是要符合业务逻辑的。

前面已经说清楚,所有卡号对应的手机号码。所有卡号,所以首先肯定以A表作为主表,并且左关联B表,这样A表所有的卡号一定会显示出来,但是如果B表的筛选条件放到最外层,这样就相当于将A表关联B表又做了一遍筛选,结果就是

就会筛选出来这么一条数据,丢失了A表中其他的卡号。

实际工作中表结构肯定没这么简单,关联的表也会很多,当有很多条件时,最好这么写

SELECT A.卡号,B.手机号码
FROM A
LEFT JOIN (
    SELECT * FROM B
    B.联系方式='2'
    )B
  ON A.客户号=B.客户号

这么写的话,A表中的数据肯定会完全保留,又能与B表的匹配,不会丢失数据。

PS:

  • 表结构
  • Left Join
  • Right Join
  • Inner Join
  • 表的关联修改和删除
  • 笛卡尔积

1、表结构

左A右B

2、Left Join

示例:2.1

Select * From A left join B on A.aid = B.bid;

left join是以A表的记录为基础的,A可以看成左表,B可以看成右表,left join是以左表为准的。换句话说,左表A的记录将会全部表示出来,而右表B只会显示符合搜索条件的记录(例子中为: A.aid = B.bid),B表记录不足的地方均为NULL.

  • A表所有记录都会显示,A表中没有被匹配的行(如aid=5、6的行)相应内容则为NULL。
  • 返回的记录数一定大于A表的记录数,如A表中aid=7行被B表匹配了3次(因为B表有三行bid=7)。

注意:在Access中A.aid、B.bid不能缩写成aid、bid,否则会提示“不支持链接表达式”,这一点不同于Where查询。

3、Right Join

示例:3.1

Select * From A right join B on A.aid = B.bid;

仔细观察一下,就会发现,和left join的结果刚好相反,这次是以右表(B)为基础的,A表不足的地方用NULL填充。

4、Inner Join

示例:4.1

Select * From A inner join B on A.aid = B.bid;

这里只显示出了 A.aid = B.bid的记录.这说明inner join并不以谁为基础,它只显示符合条件的记录。

inner join 等同于Where查询如:

Select * From A, B Where A.aid = B.bid

5、表的关联修改和删除

5.1修改

示例:5.1.1

update A left join B on A.aid = B.bid
set A.aname = B.bname

上述SQL实际操作的表为"Select * From A left join B on A.aid = B.bid",因此Access会提示更新13条记录(Select查询出的记录就是13条)。对比“示例:2.1”返回的结果,分析update后的A表:

  • aid=5、6的记录,被更新为NULL
  • aid=7的记录,被更新了3次,依次是“b1997-1”、“b1997-2”、“b1997-3”,因此其结果为最后一次更新“b1997-3”

对于上述SQL同样可以将“A.aname = B.bname”改成“B.bname = A.aname”,执行后B表将会被修改,但是执行后B表会增加三行“0, a2005-1;0, a2005-2;0, a2006”,这也不难理解,因为Left Join执行后,B表会出现三行空值。

示例:5.1.2

Where条件查询在上面的SQL中同样可以使用,其作用的表也是Select查询出的关联表。如下SQL

update A left join B on A.aid = B.bid
set A.aname = B.bname
where A.aid <> 5

执行后A表的结果:

对比第一次update可以发现,aid=5的并没有被更新。

这里只讲述left join,因为right join 和 inner join的处理过程等同于left join。另外Access中update语句中不能含有From关键字,这一点不同于其他数据库。

5.2删除

在Access中是否可以通过Left Join、Right Join、Inner Join来删除某张表的记录

示例:5.2.2

Delete From A inner join B on A.aid = B.bid
where B.bname = "b1991"

上述SQL的本意是删除A表中aid=1的记录,但执行后表A和表B均未发生任何变化。若想实现此目的,下述SQL可以实现

Delete From A
Where A.aid In (Select bid From B Where B.bname="b1991")

6、笛卡尔积

如果A表有20条记录,B表有30条记录,则二者关联后的笛卡尔积工20*30=600条记实录。也就是说A表中的每条记录都会与B表的所有记录关联一次,三种关联方式实际上就是对“笛卡尔积”的处理方式不同。

相关推荐

如果手机显示无SIM卡,到底是什么意思呢?

一般手机显示无可用SIM卡,可能是如下原因造成的,大家可以了解下,并且进行解决。第一个,SIM卡未正确插入:我们需要检查SIM卡是否已正确插入手机。如果SIM卡没有完全插入,或者插反了,手机可能会显...

赶紧设置!工信部提醒设置手机SIM卡密码

【赶紧设置!工信部提醒设置手机SIM卡密码】平安法治2020近日,针对网友反映的手机失窃导致信息泄露事件,国家工信部立即组织核查处理,要求电信企业加强安全防护,并提醒手机用户设置SIM卡密码。...

手机突然显示无SIM卡?这样做就能恢复~

大家有没经历过明明SIM卡在卡槽里放得好好的,手机却突然显示无SIM卡的状况?没有了SIM卡手机就失去了灵魂,打电话、上网的功能都不能用了。这到底是怎么一回事儿?让小翼帮你来解答~什么是SIM卡?SI...

SK电讯首尔门店遭“围攻”,SIM卡更换服务陷混乱

据yna.co.kr网4月28日报道,28日,韩国SK电讯推出免费SIM卡更换服务以应对网络安全风险,首尔光化门店门前清晨8点便已排起长队。原定于上午10点开始的服务因企业员工需求激增,提前至9点启动...

Spring新闻汇总:Framework、Data、Security、Integration和Modulith发布里程碑版本

...

Springboot特性、快速创建SpringBoot应用、Starter简介

SpringBoot基础本章我们将揭开SpringBoot的神秘面纱。...

Springboot2的熔断、限流和降级讲解

高可用的三大利器是熔断、限流和降级。它们都是在分布式系统中用于保障系统稳定性和可用性的重要策略。熔断(CircuitBreaker):熔断是一种防止故障扩散的机制。当一个服务出现故障或超时,熔断器会...

Spring Cloud 全面解析:分布式系统开发的魔法工具包

SpringCloud全面解析:分布式系统开发的魔法工具包SpringCloud是Java开发者构建分布式系统的得力助手。它基于SpringBoot,为开发者提供了强大的微服务架构支持...

真香!GitHub开源SpringCloud Alibaba全解(全彩版)先到先得!

SpringCloudAliababa简介SpringCloudAlibaba是阿里巴巴集团开源的一套微服务架构解决方案。...

聊聊langchain4j-spring的1.0.0-beta版本的更新

序本文主要研究一下langchain4j-spring的1.0.0-beta版本的更新1.0.0-beta1...

Java异步编程(5种异步实现方式详解)

Java面试经常会问到:异步操作?什么是异步?与同步有什么区别?Java异步的是如何实现?有哪些异步实现方式?下面我一一来详解异步@mikechen什么是异步?...

全部开源的快速开发平台-开源字节

《硕宇精选》专注于探索、发现、分享开源技术应用和优质开源项目。本期推荐的优质项目是开源字节是一套全部开源的快速开发平台,毫无保留给个人及企业免费使用。该平台基于SpringBoot+MyBat...

Trip.com launches 700 products in 15 countries

OnlinetravelagencyTrip.comhasofferedmorethan700newoverseasproducts,visiting15countries...

Spring事务

使用Spring事务Spring事务介绍Spring事务的特点:1.多种事务API,Spring事务都可兼容;2.程序接入简单;3.与已有的Spring框架集成。...

牛刀小试——五分钟入门Spring Boot

万物皆可HelloWorld在一个程序员的眼里,万物皆可HelloWorld。SpringBoot当然也不例外。下面一起来完成我们的第一个SpringBoot程序。...