百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

30天学会Python编程:18. Python数据库编程入门

wptr33 2025-07-10 21:26 25 浏览

18.1 数据库基础

18.1.1 数据库类型对比

18.1.2 DB-API规范

核心接口

  1. connect() - 建立连接
  2. cursor() - 创建游标
  3. execute() - 执行SQL
  4. fetchone()/fetchall() - 获取结果
  5. commit()/rollback() - 事务控制

18.2 SQLite操作

18.2.1 基本CRUD

import sqlite3

# 创建连接
conn = sqlite3.connect('example.db', check_same_thread=False)
cursor = conn.cursor()

# 建表
cursor.execute('''CREATE TABLE IF NOT EXISTS users
               (id INTEGER PRIMARY KEY, name TEXT, age INTEGER)''')

# 插入数据
cursor.execute("INSERT INTO users (name, age) VALUES (?, ?)", ('Alice', 25))

# 查询数据
cursor.execute("SELECT * FROM users WHERE age > ?", (20,))
print(cursor.fetchall())

# 提交事务
conn.commit()
conn.close()

18.2.2 高级特性

# 使用上下文管理器
with sqlite3.connect('example.db') as conn:
    conn.row_factory = sqlite3.Row  # 字典式访问
    cursor = conn.cursor()
    cursor.execute("SELECT * FROM users")
    for row in cursor:
        print(row['name'], row['age'])

# 内存数据库
mem_db = sqlite3.connect(':memory:')

18.3 MySQL/PostgreSQL

18.3.1 PyMySQL示例

import pymysql

# 连接MySQL
conn = pymysql.connect(
    host='localhost',
    user='root',
    password='password',
    database='test',
    cursorclass=pymysql.cursors.DictCursor
)

try:
    with conn.cursor() as cursor:
        # 执行查询
        sql = "SELECT * FROM users WHERE email=%s"
        cursor.execute(sql, ('test@example.com',))
        result = cursor.fetchone()
        print(result)
finally:
    conn.close()

18.3.2 psycopg2示例

import psycopg2

# 连接PostgreSQL
conn = psycopg2.connect(
    host="localhost",
    database="test",
    user="postgres",
    password="password"
)

# 使用with自动提交/回滚
with conn:
    with conn.cursor() as cursor:
        cursor.execute("""
            INSERT INTO products (name, price)
            VALUES (%s, %s)
            RETURNING id
        """, ("Laptop", 999.99))
        product_id = cursor.fetchone()[0]
        print(f"插入记录ID: {product_id}")

18.4 ORM框架

18.4.1 SQLAlchemy核心

from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

# 定义模型
Base = declarative_base()

class User(Base):
    __tablename__ = 'users'
    id = Column(Integer, primary_key=True)
    name = Column(String(50))
    age = Column(Integer)

# 创建引擎和会话
engine = create_engine('sqlite:///example.db')
Session = sessionmaker(bind=engine)
session = Session()

# 查询操作
users = session.query(User).filter(User.age > 20).all()
for user in users:
    print(user.name, user.age)

# 插入数据
new_user = User(name='Bob', age=30)
session.add(new_user)
session.commit()

18.4.2 Django ORM

# models.py
from django.db import models

class Product(models.Model):
    name = models.CharField(max_length=100)
    price = models.DecimalField(max_digits=10, decimal_places=2)
    created_at = models.DateTimeField(auto_now_add=True)

# 查询示例
from app.models import Product

# 创建记录
Product.objects.create(name="Mouse", price=29.99)

# 复杂查询
from django.db.models import Q, F
products = Product.objects.filter(
    Q(price__lt=100) | Q(name__startswith="M"),
    created_at__year=2023
).annotate(
    discounted_price=F('price')*0.9
)

18.5 NoSQL数据库

18.5.1 MongoDB

from pymongo import MongoClient

# 连接MongoDB
client = MongoClient('mongodb://localhost:27017/')
db = client['mydatabase']
collection = db['users']

# 插入文档
user = {"name": "Alice", "age": 25, "hobbies": ["coding", "reading"]}
inserted_id = collection.insert_one(user).inserted_id

# 聚合查询
pipeline = [
    {"$match": {"age": {"$gt": 20}}},
    {"$group": {"_id": "$name", "count": {"$sum": 1}}}
]
results = collection.aggregate(pipeline)

18.5.2 Redis

import redis

# 连接Redis
r = redis.Redis(host='localhost', port=6379, db=0)

# 字符串操作
r.set('foo', 'bar')
print(r.get('foo'))  # b'bar'

# 哈希操作
r.hset('user:1000', mapping={
    'name': 'Alice',
    'age': '25'
})
print(r.hgetall('user:1000'))  # {b'name': b'Alice', b'age': b'25'}

18.6 数据库连接池

18.6.1 连接池实现

from sqlalchemy import create_engine
from sqlalchemy.pool import QueuePool

# 创建连接池
engine = create_engine(
    'mysql+pymysql://user:password@localhost/db',
    poolclass=QueuePool,
    pool_size=5,
    max_overflow=10,
    pool_timeout=30
)

# 使用连接
with engine.connect() as conn:
    result = conn.execute("SELECT * FROM users")
    print(result.fetchall())

18.6.2 连接池管理

import psycopg2
from psycopg2 import pool

# 创建连接池
connection_pool = psycopg2.pool.SimpleConnectionPool(
    minconn=1,
    maxconn=10,
    host="localhost",
    database="test",
    user="postgres",
    password="password"
)

# 获取连接
conn = connection_pool.getconn()
try:
    with conn.cursor() as cursor:
        cursor.execute("SELECT * FROM products")
        print(cursor.fetchall())
finally:
    connection_pool.putconn(conn)

18.7 应用举例

案例1:电商订单

from sqlalchemy import create_engine, ForeignKey
from sqlalchemy.orm import relationship, sessionmaker
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Float, DateTime

Base = declarative_base()

class User(Base):
    __tablename__ = 'users'
    id = Column(Integer, primary_key=True)
    name = Column(String(50))
    orders = relationship("Order", back_populates="user")

class Product(Base):
    __tablename__ = 'products'
    id = Column(Integer, primary_key=True)
    name = Column(String(100))
    price = Column(Float)
    order_items = relationship("OrderItem", back_populates="product")

class Order(Base):
    __tablename__ = 'orders'
    id = Column(Integer, primary_key=True)
    user_id = Column(Integer, ForeignKey('users.id'))
    created_at = Column(DateTime)
    user = relationship("User", back_populates="orders")
    items = relationship("OrderItem", back_populates="order")

class OrderItem(Base):
    __tablename__ = 'order_items'
    id = Column(Integer, primary_key=True)
    order_id = Column(Integer, ForeignKey('orders.id'))
    product_id = Column(Integer, ForeignKey('products.id'))
    quantity = Column(Integer)
    order = relationship("Order", back_populates="items")
    product = relationship("Product", back_populates="order_items")

# 使用示例
engine = create_engine('sqlite:///ecommerce.db')
Base.metadata.create_all(engine)
Session = sessionmaker(bind=engine)
session = Session()

# 创建测试数据
new_user = User(name="Alice")
session.add(new_user)

product1 = Product(name="Laptop", price=999.99)
product2 = Product(name="Mouse", price=29.99)
session.add_all([product1, product2])

order = Order(user=new_user)
order.items = [
    OrderItem(product=product1, quantity=1),
    OrderItem(product=product2, quantity=2)
]
session.add(order)
session.commit()

# 查询用户订单
user = session.query(User).filter_by(name="Alice").first()
for order in user.orders:
    print(f"订单 {order.id}:")
    for item in order.items:
        print(f"  - {item.product.name} x{item.quantity}")

案例2:缓存策略实现

import sqlite3
import redis
import json
from datetime import datetime

class CachedDatabase:
    """带Redis缓存的数据库访问层"""
    
    def __init__(self, db_file=':memory:'):
        self.redis = redis.Redis(host='localhost', port=6379, db=0)
        self.db_conn = sqlite3.connect(db_file)
        self._init_db()
    
    def _init_db(self):
        cursor = self.db_conn.cursor()
        cursor.execute('''CREATE TABLE IF NOT EXISTS articles
                       (id INTEGER PRIMARY KEY, title TEXT, content TEXT, 
                       created_at TIMESTAMP)''')
        self.db_conn.commit()
    
    def get_article(self, article_id):
        """获取文章(优先从缓存读取)"""
        cache_key = f"article:{article_id}"
        cached_data = self.redis.get(cache_key)
        
        if cached_data:
            print("从缓存读取")
            return json.loads(cached_data)
        
        print("从数据库读取")
        cursor = self.db_conn.cursor()
        cursor.execute("SELECT * FROM articles WHERE id=?", (article_id,))
        row = cursor.fetchone()
        
        if row:
            article = {
                'id': row[0],
                'title': row[1],
                'content': row[2],
                'created_at': row[3]
            }
            # 写入缓存(60秒过期)
            self.redis.setex(cache_key, 60, json.dumps(article))
            return article
        return None
    
    def create_article(self, title, content):
        """创建新文章(自动清除相关缓存)"""
        cursor = self.db_conn.cursor()
        created_at = datetime.now().isoformat()
        cursor.execute("INSERT INTO articles (title, content, created_at) VALUES (?, ?, ?)",
                      (title, content, created_at))
        self.db_conn.commit()
        
        # 获取新插入的ID
        article_id = cursor.lastrowid
        
        # 清除可能存在的缓存
        self.redis.delete(f"article:{article_id}")
        
        return article_id

# 使用示例
cache_db = CachedDatabase()

# 创建测试文章
article_id = cache_db.create_article(
    "Python数据库编程",
    "本文介绍Python中的各种数据库操作方法..."
)

# 第一次读取(从数据库)
article = cache_db.get_article(article_id)

# 第二次读取(从缓存)
article = cache_db.get_article(article_id)

18.8 知识图谱


持续更新Python编程学习日志与技巧,敬请关注!


#编程# #学习# #在头条记录我的2025# #python#


相关推荐

oracle数据导入导出_oracle数据导入导出工具

关于oracle的数据导入导出,这个功能的使用场景,一般是换服务环境,把原先的oracle数据导入到另外一台oracle数据库,或者导出备份使用。只不过oracle的导入导出命令不好记忆,稍稍有点复杂...

继续学习Python中的while true/break语句

上次讲到if语句的用法,大家在微信公众号问了小编很多问题,那么小编在这几种解决一下,1.else和elif是子模块,不能单独使用2.一个if语句中可以包括很多个elif语句,但结尾只能有一个...

python continue和break的区别_python中break语句和continue语句的区别

python中循环语句经常会使用continue和break,那么这2者的区别是?continue是跳出本次循环,进行下一次循环;break是跳出整个循环;例如:...

简单学Python——关键字6——break和continue

Python退出循环,有break语句和continue语句两种实现方式。break语句和continue语句的区别:break语句作用是终止循环。continue语句作用是跳出本轮循环,继续下一次循...

2-1,0基础学Python之 break退出循环、 continue继续循环 多重循

用for循环或者while循环时,如果要在循环体内直接退出循环,可以使用break语句。比如计算1至100的整数和,我们用while来实现:sum=0x=1whileTrue...

Python 中 break 和 continue 傻傻分不清

大家好啊,我是大田。...

python中的流程控制语句:continue、break 和 return使用方法

Python中,continue、break和return是控制流程的关键语句,用于在循环或函数中提前退出或跳过某些操作。它们的用途和区别如下:1.continue(跳过当前循环的剩余部分,进...

L017:continue和break - 教程文案

continue和break在Python中,continue和break是用于控制循环(如for和while)执行流程的关键字,它们的作用如下:1.continue:跳过当前迭代,...

作为前端开发者,你都经历过怎样的面试?

已经裸辞1个月了,最近开始投简历找工作,遇到各种各样的面试,今天分享一下。其实在职的时候也做过面试官,面试官时,感觉自己问的问题很难区分候选人的能力,最好的办法就是看看候选人的github上的代码仓库...

面试被问 const 是否不可变?这样回答才显功底

作为前端开发者,我在学习ES6特性时,总被const的"善变"搞得一头雾水——为什么用const声明的数组还能push元素?为什么基本类型赋值就会报错?直到翻遍MDN文档、对着内存图反...

2023金九银十必看前端面试题!2w字精品!

导文2023金九银十必看前端面试题!金九银十黄金期来了想要跳槽的小伙伴快来看啊CSS1.请解释CSS的盒模型是什么,并描述其组成部分。...

前端面试总结_前端面试题整理

记得当时大二的时候,看到实验室的学长学姐忙于各种春招,有些收获了大厂offer,有些还在苦苦面试,其实那时候的心里还蛮忐忑的,不知道自己大三的时候会是什么样的一个水平,所以从19年的寒假放完,大二下学...

由浅入深,66条JavaScript面试知识点(七)

作者:JakeZhang转发链接:https://juejin.im/post/5ef8377f6fb9a07e693a6061目录...

2024前端面试真题之—VUE篇_前端面试题vue2020及答案

添加图片注释,不超过140字(可选)...

今年最常见的前端面试题,你会做几道?

在面试或招聘前端开发人员时,期望、现实和需求之间总是存在着巨大差距。面试其实是一个交流想法的地方,挑战人们的思考方式,并客观地分析给定的问题。可以通过面试了解人们如何做出决策,了解一个人对技术和解决问...