stm32使用MPU6050或ADXL345控制的车辆减速灯
wptr33 2025-07-06 17:25 4 浏览
本实验例程采用MPU6050六轴运动处理组件,模拟实现车辆减速时的灯源呼吸闪烁,以此起到警示作用。(本人也有采用ADXL345实现项目的源码程序,文章结尾2种代码都会开源)
项目介绍:基于stm32的车辆减速灯项目有很多学校作为期末考核亦或是毕设等项目,该项目整体较为简单。主要采用MPU6050亦或是ADXL345等姿态测量传感器进行三轴加速度和角速度测量,利用得到的数据进行条件判断。当满足预设条件后,LED灯按照要求进行呼吸闪烁(有些朋友可能会采用PWM调节LED,但是本人感觉PWM呼吸效果并不能起到警示作用。故应该采用PWM形式的模拟闪烁LED)。
硬件设备:STM32F103ZET6;MPU6050;LED
一、MPU6050简介
MPU6050 是 InvenSense 公司推出的全球首款整合性 6 轴运动处理组件,相较于多组件方案,免除了组合陀螺仪与加速器时之轴间差的问题,减少了安装空间。
MPU6050 内部整合了 3 轴陀螺仪和 3 轴加速度传感器,并且含有一个第二 IIC 接口,可用于连接外部磁力传感器,并利用自带的数字运动处理器(DMP: Digital Motion Processor)硬件加速引擎,通过主 IIC 接口,向应用端输出完整的 9 轴融合演算数据。有了 DMP,我们可以使用 InvenSense 公司提供的运动处理资料库,非常方便的实现姿态解算,降低了运动处理运算对操作系统的负荷,同时大大降低了开发难度。
MPU6050 的特点包括:
① 以数字形式输出 6 轴或 9 轴(需外接磁传感器)的旋转矩阵、四元数(quaternion)、欧拉角格式(Euler Angle forma)的融合演算数据(需 DMP 支持)
② 具有 131 LSBs/°/sec 敏感度与全格感测范围为±250、±500、±1000 与±2000°/sec 的 3 轴角速度感测器(陀螺仪)
③ 集成可程序控制,范围为±2g、±4g、±8g 和±16g 的 3 轴加速度传感器
④ 移除加速器与陀螺仪轴间敏感度,降低设定给予的影响与感测器的飘移
⑤ 自带数字运动处理(DMP: Digital Motion Processing)引擎可减少 MCU 复杂的融合演算数据、感测器同步化、姿势感应等的负荷
⑥ 内建运作时间偏差与磁力感测器校正演算技术,免除了客户须另外进行校正的需求
⑦ 自带一个数字温度传感器
⑧ 带数字输入同步引脚(Sync pin)支持视频电子影相稳定技术与 GPS
⑨ 可程序控制的中断(interrupt),支持姿势识别、摇摄、画面放大缩小、滚动、快速下降中断、high-G 中断、零动作感应、触击感应、摇动感应功能
⑩ VDD 供电电压为 2.5V±5%、3.0V±5%、3.3V±5%;VLOGIC 可低至 1.8V± 5%
(11) 陀螺仪工作电流:5mA,陀螺仪待机电流:5uA;加速器工作电流:500uA,加速器省电模式电流:40uA@10Hz
(12) 自带 1024 字节 FIFO,有助于降低系统功耗
(13) 高达 400Khz 的 IIC 通信接口
(14) 超小封装尺寸:4x4x0.9mm(QFN)
MPU6050 传感器的检测轴如图所示:
MPU6050 的内部框图如图所示:
其中,SCL 和 SDA 是连接 MCU 的 IIC 接口,MCU 通过这个 IIC 接口来控制 MPU6050,另外还有一个 IIC 接口:AUX_CL 和 AUX_DA,这个接口可用来连接外部从设备,比如磁传感器,这样就可以组成一个九轴传感器。AD0 是从 IIC 接口(接 MCU)的地址控制引脚,该引脚控制 IIC 地址的最低位。如果接 GND,则 MPU6050 的 IIC 地址是:0X68,如果接 VDD,则是 0X69,注意:这里的地址是不包含数据传输的最低位的(最低位用来表示读写)!!
实物图片:
引脚接线:
SDA --> I2C1_SDA
SCL --> I2C1_SCL
VCC --> 3.3v
GND --> GND
接下来,我们介绍一下利用 STM32F1 读取 MPU6050 的加速度和角度传感器数据(非中断方式),需要哪些初始化步骤:
(1)初始化 IIC 接口 ;
(2)复位 MPU6050;
(3)设置角速度传感器(陀螺仪)和加速度传感器的满量程范围;
(4)设置其他参数;
(5)配置系统时钟源并使能角速度传感器和加速度传感器 ;
该部分主要在MPU6050.C文件中有详细解释与编写过程,MPU6050主要采用I2C通讯(软件模拟)。
DMP 使用简介 :
我们可以读出 MPU6050 的加速度传感器和角速度传感器的原始数据。不过这些原始数据,对想搞四轴之类的初学者来说,用处不大,我们期望得到的是姿态数据,也就是欧拉角:航向角(yaw)、横滚角(roll)和俯仰角(pitch)。有了这三个角,我们就可以得到当前四轴的姿态,这才是我们想要的结果。(由于本项目比较简单并不需要欧拉角作为减速的判定依据,所以这里不过多介绍,代码中也没有使用到。为了满足读者各种需求,开源的代码中会放置DMP的可移植程序供大家参考)
补充说明:MPU6050姿态传感器的使用面很广,例如:无人机,平衡小车,运动手环等等,是一个值得学习的模块,希望读者有时间的情况尽可能地好好研究一下。
二、模拟PWM的闪烁呼吸灯
笔者前文有介绍,很多老师亦或是学生会习惯性直接使用PWM调节LED灯达到呼吸效果,来作为车辆减速灯的效果。但是,笔者认为PWM呼吸灯起不到警示作用。这里给大家介绍一种模拟PWM呼吸的闪烁警示灯。这种闪烁警示灯的编程原理有点类似于增量式PID的增量数值化,在51单片机中也很常见类似的编程效果。
总所周知,PWM调节时利用占空比去进行计数器比值,通过与设定的阈值比较后重装载来实现稳步呼吸的效果。而这里模拟PWM呼吸闪烁警示灯则是利用逐步增大或减小delay延迟的us秒数去亮灭LED灯来实现该功能。
其中,HAL库只提供了ms级别的延迟函数。所以这里需要自己去使用定时器TIM去编写一个us级别的延迟函数。
该方法思路是将定时器设置为1MHZ的计数频率,定时器计一个数就是1us,实现如下:
#define DLY_TIM_Handle (&htim4)
void delay_us(uint16_t nus)
{
__HAL_TIM_SET_COUNTER(DLY_TIM_Handle, 0);
__HAL_TIM_ENABLE(DLY_TIM_Handle);
while (__HAL_TIM_GET_COUNTER(DLY_TIM_Handle) < nus)
{
}
__HAL_TIM_DISABLE(DLY_TIM_Handle);
}
实现模拟PWM呼吸闪烁警示灯的代码函数:breathing_led()函数
void breathing_led()
{
if(flag == 0)
{
for(i = 0 ; i <= 10 ; i++){
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,0);
HAL_Delay(t);
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,1);
HAL_Delay(41-t);
}
t++;
if(t == 40) flag = 1;
}
if(flag == 1)
{
for(i = 0 ; i <= 10 ; i++){
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,0);
HAL_Delay(t);
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,1);
HAL_Delay(41-t);
}
t--;
if(t == 1) flag = 0;
}
}
三、CubexMX配置
1、RCC配置外部高速晶振(精度更高)
2、SYS配置:Debug设置成Serial Wire(否则可能导致芯片自锁)
3、GPIO设置PE5(LED灯的引脚)
4、TIM5设置(搭建属于自己的延迟函数)
5、I2C配置
6、UART配置
为了方便大家对MPU6050的理解,这里利用较为简单常用的串口通讯对MPU6050输出的六轴数据进行打印。当然这里大家也可以使用OLED等屏幕进行显示数据。
四、代码
4.1 MPU6050驱动
1、mpu6050.h代码
#ifndef __MPU6050_H
#define __MPU6050_H
//#include "stm32f4xx_hal.h"
#include "stm32f1xx_hal.h" 用什么系列就是什么
//#define MPU_ACCEL_OFFS_REG 0X06 //accel_offs寄存器,可读取版本号,寄存器手册未提到
//#define MPU_PROD_ID_REG 0X0C //prod id寄存器,在寄存器手册未提到
#define MPU_SELF_TESTX_REG 0X0D //自检寄存器X
#define MPU_SELF_TESTY_REG 0X0E //自检寄存器Y
#define MPU_SELF_TESTZ_REG 0X0F //自检寄存器Z
#define MPU_SELF_TESTA_REG 0X10 //自检寄存器A
#define MPU_SAMPLE_RATE_REG 0X19 //采样频率分频器
#define MPU_CFG_REG 0X1A //配置寄存器
#define MPU_GYRO_CFG_REG 0X1B //陀螺仪配置寄存器
#define MPU_ACCEL_CFG_REG 0X1C //加速度计配置寄存器
#define MPU_MOTION_DET_REG 0X1F //运动检测阀值设置寄存器
#define MPU_FIFO_EN_REG 0X23 //FIFO使能寄存器
#define MPU_I2CMST_CTRL_REG 0X24 //IIC主机控制寄存器
#define MPU_I2CSLV0_ADDR_REG 0X25 //IIC从机0器件地址寄存器
#define MPU_I2CSLV0_REG 0X26 //IIC从机0数据地址寄存器
#define MPU_I2CSLV0_CTRL_REG 0X27 //IIC从机0控制寄存器
#define MPU_I2CSLV1_ADDR_REG 0X28 //IIC从机1器件地址寄存器
#define MPU_I2CSLV1_REG 0X29 //IIC从机1数据地址寄存器
#define MPU_I2CSLV1_CTRL_REG 0X2A //IIC从机1控制寄存器
#define MPU_I2CSLV2_ADDR_REG 0X2B //IIC从机2器件地址寄存器
#define MPU_I2CSLV2_REG 0X2C //IIC从机2数据地址寄存器
#define MPU_I2CSLV2_CTRL_REG 0X2D //IIC从机2控制寄存器
#define MPU_I2CSLV3_ADDR_REG 0X2E //IIC从机3器件地址寄存器
#define MPU_I2CSLV3_REG 0X2F //IIC从机3数据地址寄存器
#define MPU_I2CSLV3_CTRL_REG 0X30 //IIC从机3控制寄存器
#define MPU_I2CSLV4_ADDR_REG 0X31 //IIC从机4器件地址寄存器
#define MPU_I2CSLV4_REG 0X32 //IIC从机4数据地址寄存器
#define MPU_I2CSLV4_DO_REG 0X33 //IIC从机4写数据寄存器
#define MPU_I2CSLV4_CTRL_REG 0X34 //IIC从机4控制寄存器
#define MPU_I2CSLV4_DI_REG 0X35 //IIC从机4读数据寄存器
#define MPU_I2CMST_STA_REG 0X36 //IIC主机状态寄存器
#define MPU_INTBP_CFG_REG 0X37 //中断/旁路设置寄存器
#define MPU_INT_EN_REG 0X38 //中断使能寄存器
#define MPU_INT_STA_REG 0X3A //中断状态寄存器
#define MPU_ACCEL_XOUTH_REG 0X3B //加速度值,X轴高8位寄存器
#define MPU_ACCEL_XOUTL_REG 0X3C //加速度值,X轴低8位寄存器
#define MPU_ACCEL_YOUTH_REG 0X3D //加速度值,Y轴高8位寄存器
#define MPU_ACCEL_YOUTL_REG 0X3E //加速度值,Y轴低8位寄存器
#define MPU_ACCEL_ZOUTH_REG 0X3F //加速度值,Z轴高8位寄存器
#define MPU_ACCEL_ZOUTL_REG 0X40 //加速度值,Z轴低8位寄存器
#define MPU_TEMP_OUTH_REG 0X41 //温度值高八位寄存器
#define MPU_TEMP_OUTL_REG 0X42 //温度值低8位寄存器
#define MPU_GYRO_XOUTH_REG 0X43 //陀螺仪值,X轴高8位寄存器
#define MPU_GYRO_XOUTL_REG 0X44 //陀螺仪值,X轴低8位寄存器
#define MPU_GYRO_YOUTH_REG 0X45 //陀螺仪值,Y轴高8位寄存器
#define MPU_GYRO_YOUTL_REG 0X46 //陀螺仪值,Y轴低8位寄存器
#define MPU_GYRO_ZOUTH_REG 0X47 //陀螺仪值,Z轴高8位寄存器
#define MPU_GYRO_ZOUTL_REG 0X48 //陀螺仪值,Z轴低8位寄存器
#define MPU_I2CSLV0_DO_REG 0X63 //IIC从机0数据寄存器
#define MPU_I2CSLV1_DO_REG 0X64 //IIC从机1数据寄存器
#define MPU_I2CSLV2_DO_REG 0X65 //IIC从机2数据寄存器
#define MPU_I2CSLV3_DO_REG 0X66 //IIC从机3数据寄存器
#define MPU_I2CMST_DELAY_REG 0X67 //IIC主机延时管理寄存器
#define MPU_SIGPATH_RST_REG 0X68 //信号通道复位寄存器
#define MPU_MDETECT_CTRL_REG 0X69 //运动检测控制寄存器
#define MPU_USER_CTRL_REG 0X6A //用户控制寄存器
#define MPU_PWR_MGMT1_REG 0X6B //电源管理寄存器1
#define MPU_PWR_MGMT2_REG 0X6C //电源管理寄存器2
#define MPU_FIFO_CNTH_REG 0X72 //FIFO计数寄存器高八位
#define MPU_FIFO_CNTL_REG 0X73 //FIFO计数寄存器低八位
#define MPU_FIFO_RW_REG 0X74 //FIFO读写寄存器
#define MPU_DEVICE_ID_REG 0X75 //器件ID寄存器,who am i寄存器
//如果AD0脚(9脚)接地,IIC地址为0X68(不包含最低位).
//如果接V3.3,则IIC地址为0X69(不包含最低位).
#define MPU_ADDR 0X68
//因为MPU6050的AD0接GND,所以则读写地址分别为0XD1和0XD0
// (如果AD0接VCC,则读写地址分别为0XD3和0XD2)
#define MPU_READ 0XD1
#define MPU_WRITE 0XD0
uint8_t MPU_Init(void); //初始化MPU6050
uint8_t MPU_Write_Len(uint8_t reg,uint8_t len,uint8_t *buf); //IIC连续写
uint8_t MPU_Read_Len(uint8_t reg,uint8_t len,uint8_t *buf); //IIC连续读
uint8_t MPU_Write_Byte(uint8_t reg,uint8_t data); //IIC写一个字节
uint8_t MPU_Read_Byte(uint8_t reg); //IIC读一个字节
uint8_t MPU_Set_Gyro_Fsr(uint8_t fsr);
uint8_t MPU_Set_Accel_Fsr(uint8_t fsr);
uint8_t MPU_Set_LPF(uint16_t lpf);
uint8_t MPU_Set_Rate(uint16_t rate);
uint8_t MPU_Set_Fifo(uint8_t sens);
float MPU_Get_Temperature(void);
uint8_t MPU_Get_Gyroscope(short *gx,short *gy,short *gz);
uint8_t MPU_Get_Accelerometer(short *ax,short *ay,short *az);
#endif
2、mpu6050.c代码
#include "mpu6050.h"
#include "stdio.h"
//初始化MPU6050
//返回值:0,成功
// 其他,错误代码
uint8_t MPU_Init(void)
{
uint8_t res;
extern I2C_HandleTypeDef hi2c1;
HAL_I2C_Init(&hi2c1);
MPU_Write_Byte(MPU_PWR_MGMT1_REG,0X80); //复位MPU6050
MPU_Write_Byte(MPU_PWR_MGMT1_REG,0X00); //唤醒MPU6050
MPU_Set_Gyro_Fsr(3); //陀螺仪传感器,±2000dps
MPU_Set_Accel_Fsr(0); //加速度传感器,±2g
MPU_Set_Rate(50); //设置采样率50Hz
MPU_Write_Byte(MPU_INT_EN_REG,0X00); //关闭所有中断
MPU_Write_Byte(MPU_USER_CTRL_REG,0X00); //I2C主模式关闭
MPU_Write_Byte(MPU_FIFO_EN_REG,0X00); //关闭FIFO
MPU_Write_Byte(MPU_INTBP_CFG_REG,0X80); //INT引脚低电平有效
res=MPU_Read_Byte(MPU_DEVICE_ID_REG);
printf("\r\nMPU6050:0x%2x\r\n",res);
if(res==MPU_ADDR)//器件ID正确
{
MPU_Write_Byte(MPU_PWR_MGMT1_REG,0X01); //设置CLKSEL,PLL X轴为参考
MPU_Write_Byte(MPU_PWR_MGMT2_REG,0X00); //加速度与陀螺仪都工作
MPU_Set_Rate(50); //设置采样率为50Hz
}else
return 1;
return 0;
}
//设置MPU6050陀螺仪传感器满量程范围
//fsr:0,±250dps;1,±500dps;2,±1000dps;3,±2000dps
//返回值:0,设置成功
// 其他,设置失败
uint8_t MPU_Set_Gyro_Fsr(uint8_t fsr)
{
return MPU_Write_Byte(MPU_GYRO_CFG_REG,fsr<<3);//设置陀螺仪满量程范围
}
//设置MPU6050加速度传感器满量程范围
//fsr:0,±2g;1,±4g;2,±8g;3,±16g
//返回值:0,设置成功
// 其他,设置失败
uint8_t MPU_Set_Accel_Fsr(uint8_t fsr)
{
return MPU_Write_Byte(MPU_ACCEL_CFG_REG,fsr<<3);//设置加速度传感器满量程范围
}
//设置MPU6050的数字低通滤波器
//lpf:数字低通滤波频率(Hz)
//返回值:0,设置成功
// 其他,设置失败
uint8_t MPU_Set_LPF(uint16_t lpf)
{
uint8_t data=0;
if(lpf>=188)data=1;
else if(lpf>=98)data=2;
else if(lpf>=42)data=3;
else if(lpf>=20)data=4;
else if(lpf>=10)data=5;
else data=6;
return MPU_Write_Byte(MPU_CFG_REG,data);//设置数字低通滤波器
}
//设置MPU6050的采样率(假定Fs=1KHz)
//rate:4~1000(Hz)
//返回值:0,设置成功
// 其他,设置失败
uint8_t MPU_Set_Rate(uint16_t rate)
{
uint8_t data;
if(rate>1000)rate=1000;
if(rate<4)rate=4;
data=1000/rate-1;
data=MPU_Write_Byte(MPU_SAMPLE_RATE_REG,data); //设置数字低通滤波器
return MPU_Set_LPF(rate/2); //自动设置LPF为采样率的一半
}
//得到温度值
//返回值:温度值(扩大了100倍)
float MPU_Get_Temperature(void)
{
unsigned char buf[2];
short raw;
float temp;
MPU_Read_Len(MPU_TEMP_OUTH_REG,2,buf);
raw=(buf[0]<<8)| buf[1];
temp=(36.53+((double)raw)/340)*100;
// temp = (long)((35 + (raw / 340)) * 65536L);
return temp/100.0f;
}
//得到陀螺仪值(原始值)
//gx,gy,gz:陀螺仪x,y,z轴的原始读数(带符号)
//返回值:0,成功
// 其他,错误代码
uint8_t MPU_Get_Gyroscope(short *gx,short *gy,short *gz)
{
uint8_t buf[6],res;
res=MPU_Read_Len(MPU_GYRO_XOUTH_REG,6,buf);
if(res==0)
{
*gx=((uint16_t)buf[0]<<8)|buf[1];
*gy=((uint16_t)buf[2]<<8)|buf[3];
*gz=((uint16_t)buf[4]<<8)|buf[5];
}
return res;
}
//得到加速度值(原始值)
//gx,gy,gz:陀螺仪x,y,z轴的原始读数(带符号)
//返回值:0,成功
// 其他,错误代码
uint8_t MPU_Get_Accelerometer(short *ax,short *ay,short *az)
{
uint8_t buf[6],res;
res=MPU_Read_Len(MPU_ACCEL_XOUTH_REG,6,buf);
if(res==0)
{
*ax=((uint16_t)buf[0]<<8)|buf[1];
*ay=((uint16_t)buf[2]<<8)|buf[3];
*az=((uint16_t)buf[4]<<8)|buf[5];
}
return res;;
}
//IIC连续写
uint8_t MPU_Write_Len(uint8_t reg,uint8_t len,uint8_t *buf)
{
extern I2C_HandleTypeDef hi2c1;
HAL_I2C_Mem_Write(&hi2c1, MPU_WRITE, reg, I2C_MEMADD_SIZE_8BIT, buf, len, 0xfff);
HAL_Delay(100);
return 0;
}
//IIC连续读
//addr:器件地址
//reg:要读取的寄存器地址
//len:要读取的长度
//buf:读取到的数据存储区
//返回值:0,正常
// 其他,错误代码
uint8_t MPU_Read_Len(uint8_t reg,uint8_t len,uint8_t *buf)
{
extern I2C_HandleTypeDef hi2c1;
HAL_I2C_Mem_Read(&hi2c1, MPU_READ, reg, I2C_MEMADD_SIZE_8BIT, buf, len, 0xfff);
HAL_Delay(100);
return 0;
}
//IIC写一个字节
//reg:寄存器地址
//data:数据
//返回值:0,正常
// 其他,错误代码
uint8_t MPU_Write_Byte(uint8_t reg,uint8_t data)
{
extern I2C_HandleTypeDef hi2c1;
unsigned char W_Data=0;
W_Data = data;
HAL_I2C_Mem_Write(&hi2c1, MPU_WRITE, reg, I2C_MEMADD_SIZE_8BIT, &W_Data, 1, 0xfff);
HAL_Delay(100);
return 0;
}
//IIC读一个字节
//reg:寄存器地址
//返回值:读到的数据
uint8_t MPU_Read_Byte(uint8_t reg)
{
extern I2C_HandleTypeDef hi2c1;
unsigned char R_Data=0;
HAL_I2C_Mem_Read(&hi2c1, MPU_READ, reg, I2C_MEMADD_SIZE_8BIT, &R_Data, 1, 0xfff);
HAL_Delay(100);
return R_Data;
}
4.2 模拟PWM的闪烁警示灯
1、breath.h代码
#ifndef __BREATH_H
#define __BREATH_H
void breathing_led();
void unled();
void delay_us(int nus);
#endif
2、breath.c代码
#include "breath.h"
#include "stdio.h"
#include "stm32f1xx_hal.h"
#include "gpio.h"
#include "tim.h"
#define DLY_TIM_Handle (&htim5)
unsigned int t,i;
unsigned char flag = 0;
//定时TIM5变us延迟函数
void delay_us(int nus)
{
__HAL_TIM_SET_COUNTER(DLY_TIM_Handle, 0);
__HAL_TIM_ENABLE(DLY_TIM_Handle);
while (__HAL_TIM_GET_COUNTER(DLY_TIM_Handle) < nus)
{
}
__HAL_TIM_DISABLE(DLY_TIM_Handle);
}
///模拟PwM的呼吸闪烁警示灯
void breathing_led()
{
if(flag == 0)
{
for(i = 0 ; i <= 10 ; i++){
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,0);
HAL_Delay(t);
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,1);
HAL_Delay(41-t);
}
t++;
if(t == 40) flag = 1;
}
if(flag == 1)
{
for(i = 0 ; i <= 10 ; i++){
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,0);
HAL_Delay(t);
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,1);
HAL_Delay(41-t);
}
t--;
if(t == 1) flag = 0;
}
}
//非刹车状态下的LED灯
void unled()
{
HAL_GPIO_WritePin(GPIOE,GPIO_PIN_5,1);
}
4.3 UART串口通讯
usart.c代码的printf重写
/* USER CODE BEGIN 0 */
//重定义fputc函数
int fputc(int ch, FILE *f)
{
HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xffff);
return ch;
}
/* USER CODE END 0 */
4.4 主函数mian
部分添加代码:
/* USER CODE BEGIN Includes */
#include "mpu6050.h"
#include "stdio.h"
#include "breath.h"
/* USER CODE END Includes */
/* USER CODE BEGIN PV */
short x;
short y;
short z;
short ax;
short ay;
short az;
/* USER CODE END PV */
/* USER CODE BEGIN 2 */
MPU_Init();
/* USER CODE END 2 */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
MPU_Get_Gyroscope(&x,&y,&z);
MPU_Get_Accelerometer(&ax,&ay,&az);
// HAL_Delay(100);
if(az>500)
{
breathing_led();
}
if(az<500 && 0<az)
{
unled();
}
printf("\r\nx=%d,y=%d,z=%d",x,y,z);
printf("\r\nax=%d,ay=%d,az=%d",ax,ay,az);
}
/* USER CODE END 3 */
五、实验效果
5.1 串口通讯
代码开源:
MPU6050车辆减速灯代码:链接:
https://pan.baidu.com/s/1jCYHd2KvZ_ka-I98Ur0WAQ 提取码:efy9
ADXL345车辆减速灯代码:链接:
https://pan.baidu.com/s/1j5zhWChrnyK6lB8d90p6_w 提取码:ucvf
相关推荐
- F103C8T6移植FATFS文件系统 版本R0.15
-
STM32F103C8T6芯片在W25Q64上移植FATFS(版本R0.15)实现过程:1、首先完成USART初始化和调试,用于传输信息到串口调试软件。2、完成SPI相关参数配置及调试,用于单片机和存...
- stm32使用MPU6050或ADXL345控制的车辆减速灯
-
本实验例程采用MPU6050六轴运动处理组件...
- STM32F103串口输出prtinf覆盖(stm32printf函数的串口输出)
-
采用正点原子的板子,有如下坑,记录如下:(1)main中应用头文件#include"stdio.h"(2)采用hal进行fputc和fgetc覆盖,如下intfputc(intc...
- STM32 学习8 USART串口通讯与printf重定向
-
一、串口通信介绍STM32F103ZET6包含多个UART、USART串口。...
- 教你如何使用SEGGER RTT优雅的实现日志系统
-
今天开始了BMS系统的软件代码部分的搭建,计划是分成三层:硬件驱动,AFE层和系统应用层。第一步肯定是先把底层的IIC通信调通,CG861xx的IIC通信和TI的BQ769X0...
- 终极调试利器,各种Link通吃(link4a调制方式)
-
今天继续更新一期KEIL调试方法。事实上,关于调试方法,鱼鹰写了一个系列,汇总文为《佛祖保佑,永无BUG,永不修改|KEIL调试系列总结篇》,对于KEIL方法感兴趣的可以看看。这个调试...
- 在 STM32 中使用 printf() 函数,别漏掉这几行代码!
-
问:在STM32上轻松使用printf函数除了点亮LED外,向串行控制台发送打印信息可能是调试嵌入式项目时最简单、最直接且最常用的技术。虽然大多数平台都拥有可以在UART总线上传输数据的API,但它们...
- 高性能异步io机制:io_uring(异步io select)
-
io_uring是linux内核5.10引入的异步io接口。相比起用户态的DPDK、SPDK,io_uring作为内核的一部分,通过mmap的方式实现用户和内核共享内存,并基于m...
- 精品博文ARM中打印函数print 的几种实现方法
-
1利用C库函数printf步骤:1)首先需要包含头文件stdio.h。2)然后定义文件句柄。实际上就是一个int型变量封装在结构体中。struct__FILE{inthandle;};3)定...
- C语言char的详解(c语言(char))
-
在C语言中,char是一种基础数据类型,用于表示字符或小整数值。对char的理解和处理非常重要,尤其是在字符串操作、文件读写或其他需要直接控制内存的应用场景中。下面从基本定义、存储方式、常见用法...
- C语言之文件操作(c语言文件操作实验总结)
-
文件操作是C语言中非常重要的功能,用于读取和写入文件中的数据。C语言提供了一组标准库函数(如fopen、fclose、fread、fwrite等)来实现文件操作。以下是针对C语言初学者的详细讲解。...
- STM32-ADC如何把采集的数据转换为小数
-
编辑一、代码原理解析这段代码围绕“STM32中ADC数据采集、整数与小数计算及串口输出”展开,核心是数据类型的使用(unsignedint/signedint/float)、ADC数...
- 循环队列原理及在单片机串口通讯中的应用(二)
-
前言书接上回,前文主要介绍了环形队列的实现原理以及C语言实现及测试过程,本文将回归到嵌入式平台的应用中,话不多说,淦,上干货!...
- STM32编程中printf函数重定向背后的原理
-
在C语言中,printf是一个非常好用的函数,尤其是在程序调试阶段,我们可以通printf打印变量的值来帮助查错。在学习C语言的时候我们的开发环境和运行环境都是PC机,printf函数打印到PC机...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
git 执行pull错误如何撤销 git pull fail
-
面试官:git pull是哪两个指令的组合?
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)