百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

人人都能看懂的「迭代器、生成器」入门指南

wptr33 2025-07-03 01:13 15 浏览

来源:早起Python

作者:刘早起

大家好。

这是「人人都能看懂的 Python 进阶」系列。

今天我们将讨论能在很多教程中看到,但又常常搞的头晕转向的迭代器、生成器,以及让新手经常困惑的yield

事实上,和装饰器一样,这三个概念也是绑在一起的,例如你想知道 「什么是yield,那在这之前你必须了解什么是生成器。不过在了解生成器之前,又必须了解什么是迭代器,但在搞明白迭代器之前,你总要知道什么是可迭代对象吧。

下面就让我们按照这个思路,来一点一点前进吧。

01、迭代器

1.1 迭代

在介绍一切之前,先说一下最简单的迭代

>>> for i in range(3):
...    print(i)
0
1
2

就像这样,逐个打印元素的过程就是迭代,这个过程也是我们日常写代码接触到最多的操作。

1.2 可迭代对象

让我们继续,什么是可迭代对象?

就像上面代码一样「能够执行迭代(遍历所有元素)的操作的对象」就是可迭代对象,例如列表

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3

就像列表一样,可以使用 for 循环进行迭代的对象,就是可迭代对象,我们常用的字符串、列表、文件等都是可迭代对象。

1.3 对象可迭代的原因

现在相信你应该对「可迭代对象」这个名词有一个大致的了解,为了加深理解,我们继续研究为什么一个对象是可以迭代的

让我们看看当Python解释器遇到迭代操作时,例如for ··· in x是怎么处理的

  • 自动调用 iter(x)函数。
  • 检查对象是否实现了 __iter__ 方法,如果实现了就调用它,获取 一个迭代器。
  • 如果没有实现 __iter__ 方法,但是实现了 __getitem__ 方法, Python 会创建一个迭代器,尝试按顺序(从索引 0 开始)获取元素。
  • 如果两个方法都没有,则会抛出 TypeError 异常,提示该对象不可以迭代

所以「含有 __iter__() 方法或 __getitem__() 方法的对象称之为可迭代对象

让我们来验证上一节定义的list是否有这两个方法

答案是肯定的,当然在Python中有专门的方法去检查一个对象是否可迭代,例如isinstance()

>>> from collections import Iterable
>>> isinstance(mylist, Iterable) 
True

1.4 迭代器

现在来说说相对来说更加抽象一点的迭代器。

简单来说拥有next()方法的可迭代对象就是迭代器,或者说可迭代的对象和迭代器之间的关系是:Python 从可迭代的对象 中获取迭代器。

所以上面说到的列表、元祖、字符串等都不是迭代器,但是,可以使用 Python 内置的 iter() 函数获得它们的迭代器对象,让我们使用迭代器的模式改写之前的案例

>>> mylist = [1,2,3]
>>> it = iter(mylist) #构建迭代器
>>> while True:
        try:
            print(next(it))
        except StopIteration:
            break

1
2
3

上面的代码中先使用可迭代对象构建迭代器 it,不断在迭代器上调用 next 函数,获取下一个元素,如果没有字符了,迭代器会抛出 StopIteration 异常,此时退出循环。

其实看到这里,很多人都会和我一样想,迭代器它到底有什么用或者说在什么场景下我应该使用迭代器呢

实际上很少有人会将好好的 for 循环改写成迭代器形式,大多数教程也是用斐波那契数列来举例,我们学习这些方法背后的原理一方面能更好的理解 Python,并且迭代器也是下面我们要说的生成器的重要基础。

02、生成器

2.1 生成器

现在我们已经知道了for循环背后的机制,但如果数据量太大时,比如for i in range(1000000),使用for循环将所有值存储在内存不仅占用很大的存储空间,并且如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

而生成器的想法就是,我们不需要一次性把这个列表创建出来,只需要记住它的建立规则,之后需要使用的时候一遍计算一遍创建

创建生成器的方法很简单,只需要将列表推导式中的[]换成()就行了,例如

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4

但是我们不能多次执行for i in mygenerator,因为生成器只能使用一次!

另外要强调的是「生成器也是特殊的迭代器」因此它拥有上面几节介绍的迭代器的相关性质!

2.2 yield

最后来说说让任何多人头疼的 yield 语法。

用通俗的话去说,可以将它看成return,只不过它返回的是一个生成器,记住在初学时不需要想明白这个yield到底是什么,但务必了解它的运行机制

下面让我们看一段代码

>>> def f123():
...    print("第一次运行")
...    yield 1
...    print("第二次运行")
...    yield 2
...    print("第三次运行")
...    yield 3
>>> gen = f123()
>>> gen
<generator object f123 at 0x7fcd301274a0>

可以看到,如果一个函数,使用yield关键词返回值,那么它就是一个生成器函数(f123)

与普通函数不同,生成器函数被调用后,其函数体内的代码并不会立即执行(执行gen = f123()后没有打印出任何值),而是返回一个生成器(gen)!

上面说到,生成器也是迭代器,且yield就当作return看,所以下面的代码运行结果是可以轻松猜到的

>>> for item in gen:   
...    print(item)
第一次运行
1
第二次运行
2
第三次运行
3

重点来了,如果使用 next(gen) 会发生什么?

>>> next(gen)
第一次运行
1
>>> next(gen)
第二次运行
2
>>> next(gen)
第三次运行
3
>>> next(gen)
Traceback (most recent call last)
<ipython-input-17-6e72e47198db> in <module>
----> 1 next(gen)

StopIteration: 

我们可以看到, 每次调用next(gen)都只运行到yield位置停止,下一次运行时从上一次结束的位置开始! 并且该生成器的长度取决于函数中yield出现的次数。

在这里想多插一句,虽然我们将yield当成return看,上面的打印出来的1、2、3我们应该将它称为生成值,而不是返回值,这不是某个函数返回的值,而是生成器生成的!希望大家可以再去体会一下!

好了,如果你看明白了上面这个最简单的 yield 函数示例,我们接着看下一个例子,生成器也可以接受参数。

在生成器函数中,如果将 yield 放在左边,就可以使用 send 方法传递参数,注意看下面的案例

def simple_coro2(a):

    print('-> Started: a =', a)
    b = yield a
    print('-> Received: b =', b)
    c = yield a + b

    print('-> Received: c =', c)

gen = simple_gen(14)

这里我们依旧是定义了一个生成器函数,思考一下执行next(gen)会发生什么

>>> next(gen)
-> Started: a = 14
14

上一个例子说到「每次调用next(gen)都只运行到yield位置停止,下一次运行时从上一次结束的位置开始!

所以现在并没有执行b = yield a,仅是将左边yield a执行,生成了a并打印 -> Started: a = 14 消息,然后产出 a 的值,并且暂停,等待为 b 赋值。之后可以使用gen.send(28)来传递28给b

>>> gen.send(28)
-> Received: b = 28
42

依旧是执行到yield a + b结束,并等待等待为 c 赋值。现在如果我们给c赋值会发生什么?

>>> gen.send(99)
-> Received: c = 99
Traceback (most recent call last)
<ipython-input-51-77455e0ba24f> in <module>
----> 1 gen.send(99)

StopIteration:

可以看到在把数字 99 发给暂停的生成器;计算 yield 表达式,得到 99,然后把 那个数绑定给 c。打印 -> Received: c = 99 消息然后终止, 导致生成器对象抛出 StopIteration 异常。

现在可以通过下面一张流程图来加深上面案例的过程,可能不太适应这种 = 右边的代码在赋值之前执行并暂停的形式,但是必须要理解,这是掌握 yield 最关键的知识!

好了,以上就是有关 Python 中迭代器、生成器的简单入门讲解!

相关推荐

redis的八种使用场景

前言:redis是我们工作开发中,经常要打交道的,下面对redis的使用场景做总结介绍也是对redis举报的功能做梳理。缓存Redis最常见的用途是作为缓存,用于加速应用程序的响应速度。...

基于Redis的3种分布式ID生成策略

在分布式系统设计中,全局唯一ID是一个基础而关键的组件。随着业务规模扩大和系统架构向微服务演进,传统的单机自增ID已无法满足需求。高并发、高可用的分布式ID生成方案成为构建可靠分布式系统的必要条件。R...

基于OpenWrt系统路由器的模式切换与网页设计

摘要:目前商用WiFi路由器已应用到多个领域,商家通过给用户提供一个稳定免费WiFi热点达到吸引客户、提升服务的目标。传统路由器自带的Luci界面提供了工厂模式的Web界面,用户可通过该界面配置路...

这篇文章教你看明白 nginx-ingress 控制器

主机nginx一般nginx做主机反向代理(网关)有以下配置...

如何用redis实现注册中心

一句话总结使用Redis实现注册中心:服务注册...

爱可可老师24小时热门分享(2020.5.10)

No1.看自己以前写的代码是种什么体验?No2.DooM-chip!国外网友SylvainLefebvre自制的无CPU、无操作码、无指令计数器...No3.我认为CS学位可以更好,如...

Apportable:拯救程序员,IOS一秒变安卓

摘要:还在为了跨平台使用cocos2d-x吗,拯救objc程序员的奇葩来了,ApportableSDK:FreeAndroidsupportforcocos2d-iPhone。App...

JAVA实现超买超卖方案汇总,那个最适合你,一篇文章彻底讲透

以下是几种Java实现超买超卖问题的核心解决方案及代码示例,针对高并发场景下的库存扣减问题:方案一:Redis原子操作+Lua脚本(推荐)//使用Redis+Lua保证原子性publicbo...

3月26日更新 快速施法自动施法可独立设置

2016年3月26日DOTA2有一个79.6MB的更新主要是针对自动施法和快速施法的调整本来内容不多不少朋友都有自动施法和快速施法的困扰英文更新日志一些视觉BUG修复就不翻译了主要翻译自动施...

Redis 是如何提供服务的

在刚刚接触Redis的时候,最想要知道的是一个’setnameJhon’命令到达Redis服务器的时候,它是如何返回’OK’的?里面命令处理的流程如何,具体细节怎么样?你一定有问过自己...

lua _G、_VERSION使用

到这里我们已经把lua基础库中的函数介绍完了,除了函数外基础库中还有两个常量,一个是_G,另一个是_VERSION。_G是基础库本身,指向自己,这个变量很有意思,可以无限引用自己,最后得到的还是自己,...

China&#39;s top diplomat to chair third China-Pacific Island countries foreign ministers&#39; meeting

BEIJING,May21(Xinhua)--ChineseForeignMinisterWangYi,alsoamemberofthePoliticalBureau...

移动工作交流工具Lua推出Insights数据分析产品

Lua是一个适用于各种职业人士的移动交流平台,它在今天推出了一项叫做Insights的全新功能。Insights是一个数据平台,客户可以在上面实时看到员工之间的交流情况,并分析这些情况对公司发展的影响...

Redis 7新武器:用Redis Stack实现向量搜索的极限压测

当传统关系型数据库还在为向量相似度搜索的性能挣扎时,Redis7的RedisStack...

Nginx/OpenResty详解,Nginx Lua编程,重定向与内部子请求

重定向与内部子请求Nginx的rewrite指令不仅可以在Nginx内部的server、location之间进行跳转,还可以进行外部链接的重定向。通过ngx_lua模块的Lua函数除了能实现Nginx...