Python生成器(Python生成器对象)
wptr33 2025-07-03 01:13 5 浏览
一、Python生成器介绍
1.什么是生成器
在Python中,使用了 yield 的函数被称为生成器(generator)。
跟普通函数不同的是,生成器是一个返回迭代器的函数(一次一个值),只能用于迭代操作,更简单点理解生成器就是一个迭代器。
2.生成器的作用
内存占用少,节约资源(后面会有具体案例说明)。
二、创建生成器
创建生成器有两种方法,一种是把列表生成式的中括号[]改成小括号(),一种是函数中包含yield关键字。
1.列表生成式与生成器
# 列表生成式
list_1 = [x * x for x in range(10)]
# 生成器
# 把列表生成式的中括号[]改成小括号(),就成了生成器
list_generator = (x * x for x in range(10))
前面说了生成器的最大好处就是节约内存资源,下面打印一下列表list_1和生成器list_generator,对比一下他们的内存占用:
print(list_1.__sizeof__()) # 84字节
print(list_generator.__sizeof__()) # 48字节
一个是84字节,一个是48字节,看起来并不明显,我们把range范围扩大到1000000,也就是包含一百万个元素,此时再来对比:
list_1 = [x * x for x in range(1000000)]
list_generator = (x * x for x in range(1000000))
print(list_1.__sizeof__()) # 4348720字节
print(list_generator.__sizeof__()) # 48字节
当range范围扩大到1000000后,列表list_1占用了4348720字节,而生成器list_generator仍然只占用了48字节(因为一次只取一个值)。因此可以得出结论:使用列表会一次性将元素都加载到内存中,占用大量的内存,如果内存不够的话,很可能还会出现Out Of Memory,而我们只需要访问部分元素,造成了大量的资源浪费;而使用生成器,因为一次只加载一个元素的缘故,所以会比较节约资源。
2.函数生成器
坦白讲,如果遇到比较复杂的算法,使用列表推导式写起来会比较麻烦,也不易于阅读,此时可以用函数来实现。例如,读取一个大文本文件:
def read_large_file(file):
with open(file=file, encoding="utf8") as f:
lines = f.readlines()
for line in lines:
yield line
for i in read_large_file("c:/test_file.txt"):
print(i)
三、生成器的执行顺序
- 带有 yield 的函数不再是一个普通函数,而是一个生成器generator。
- yield相当于 return 返回一个值,并且记住这个返回值的位置,下次迭代时,代码从yield的下一条语句开始执行。
# 生成器执行顺序
def yield_order(n):
for i in range(n):
print("i: ", i)
yield i * 2
print("i = ", i)
print("done")
for i in yield_order(5):
print(i)
'''
i: 0
0
i = 0
i: 1
2
i = 1
i: 2
4
i = 2
i: 3
6
i = 3
i: 4
8
i = 4
done
'''
执行过程分析:
*** 第一次迭代 i=0 ***
i: 0
0
第一次迭代i=0,yield相当于return返回一个值0,并且记住这个返回值的位置i * 2,也就是0 * 2,乘积为0,所以在调用函数打印i的时候就是0
*** 第二次迭代 i=1 ***
i = 0
i: 1
2
第二次迭代i=1,yield相当于return返回一个值1,并且记住这个返回值的位置i * 2,也就是1 * 2,乘积为2,所以在调用函数打印i的时候就是2
第二次迭代会从yield的下一条语句开始执行也就是print("i = ", i),打印结果为:i = 0
*** 第三次迭代 i=2 ***
i = 1
i: 2
4
第三次迭代i=2,yield相当于return返回一个值2,并且记住这个返回值的位置i * 2,也就是2 * 2,乘积为4,所以在调用函数打印i的时候就是4
第三次迭代会从yield的下一条语句开始执行也就是print("i = ", i),打印结果为:i = 1
*** 第四次迭代 i=3 ***
i = 4
i: 3
6
第四次迭代i=3,yield相当于return返回一个值3,并且记住这个返回值的位置i * 2,也就是3 * 2,乘积为6,所以在调用函数打印i的时候就是6
第四次迭代会从yield的下一条语句开始执行也就是print("i = ", i),打印结果为:i = 2
*** 第五次迭代 i=4 ***
i = 3
i: 4
8
i = 4
done
第五次迭代i=4,yield相当于return返回一个值4,并且记住这个返回值的位置i * 2,也就是4 * 2,乘积为8,所以在调用函数打印i的时候就是8
第三次迭代会从yield的下一条语句开始执行也就是print("i = ", i),打印结果为:i = 3
四、用生成器实现斐波那契数列
斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)。
# 生成器实现斐波那契数列
def fib(number):
"""number表示最大数量"""
n, a, b = 0, 0, 1
while n < number:
yield b
a, b = b, a + b
n = n + 1
for i in fib(5):
print(i)
小结
- 使用yield的函数都是生成器函数,可以使用for循环获取值,也可以使用next获取生成器函数的值
- 生成器仅仅保存了一套生成数值的算法,并且没有让这个算法现在就开始执行,而是什么时候调它,它什么时候开始计算一个新的值,并返回。
相关推荐
- python生成脚本与部署的方案(python生成脚本与部署的方案区别)
-
上周接到一个需求任务,去帮助抢舱位小队优化流程和提升他们的效率。公司的订舱需求越来越大,需求的舱位产品越来越多,而且每次只给我们几十分钟的准备时间,导致每次匆匆忙忙,人手不足,抢不到舱位则影响公司业务...
- 什么是Python中的生成器推导式?(生成器推导式的结果是一个)
-
编程派微信号:codingpy本文作者为NedBatchelder,是一名资深Python工程师,目前就职于在线教育网站Edx。文中蓝色下划线部分可“阅读原文”后点击。Python中有一种紧凑的语法...
- Python技巧1:使用Python生成验证码
-
使用Python生成验证码
- 别再用手敲了,这个工具可以自动生成python爬虫代码
-
我们在写爬虫代码时,常常需要各种分析调试,而且每次直接用代码调试都很麻烦所以今天给大家分享一个工具,不仅能方便模拟发送各种http请求,还能轻松调试,最重要的是,可以将调试最终结果自动转换成爬虫代码,...
- 在 Python 中构建生成式 AI 处理器
-
为什么不为ApacheNiFi2.0.0创建一个Python处理器?在本教程中,了解这样做的挑战是容易还是困难。当我开始做这件事时,那是一个下雪天。我看到了IBMWatsonXPyt...
- 一文掌握Python生成器和迭代器之间的区别
-
迭代器(Iterators)迭代器是遵循迭代器协议的对象,这意味着它们实现了__iter__()和__next__()方法。__iter__()返回迭代器对象本身,__next__()返回容器中的下一...
- 为你的python程序上锁:软件序列号生成器
-
序列号很多同学可能开发了非常多的程序了,并且进行了...
- 5分钟掌握Python(八)之生成器(生成器 python)
-
1)说明:在Python中,这种一边循环一边计算的机制,称为生成器:generator。在Python中,使用了yield的函数被称为生成器(generator)。跟普通函数不同的是,生成...
- 使用python生成添加管理员账户的exe
-
0x01前言在渗透测试中,针对Windows服务器获取webshell后一般会考虑新建管理员账号(当然某些情况下可以直接读密码)登录rdp方便渗透。目前来说,常见的使用netuser(包括激活gu...
- 人人都能看懂的「迭代器、生成器」入门指南
-
来源:早起Python作者:刘早起...
- 用检索增强生成让大模型更强大,这里有个手把手的Python实现
-
选自towardsdatascience...
- Markdown + 文档管理 + 静态网页生成,集大成的 Markdown 应用:MWeb
-
上周给大家推荐了Typora,作为一款纯粹的Markdown应用来说,它的各种功能和细节可以说已经相当极致,然而,Ulysses用户表示:我们想要的不仅仅是Markdown。是的,Markdo...
- python yield -- 生成器(python 生成器send)
-
概念:yield和return的区别:一个是返回值,一个是迭代器,多次返回python中,yield关键字用于从一个函数中返回一个值,并且能够在之后从同一个位置继续执行。这使得yield成为...
- Python生成器(Python生成器对象)
-
一、Python生成器介绍1.什么是生成器在Python中,使用了...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
面试官:git pull是哪两个指令的组合?
-
git 执行pull错误如何撤销 git pull fail
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)