基于优化变分模态分解的一维时间序列信号降噪(MATLAB 2018)
wptr33 2025-06-12 16:42 28 浏览
关于变分模态分解:
变分模态分解中为什么要各个模态估计的带宽之和最小?
因为VMD是个优化问题,VMD方法首先在时域构造一个共同优化的目标,该目标在所有成分完全重构原信号的约束下追求所有成分的带宽总和最小(窄带假设)。实际上,该共同优化目标被转换到频域内通过交替乘子法ADMM求解。在频域上,该方法可以看作是对原信号中所有成分频谱系数和中心频率的共同搜索。
如何更好地对变分模态分解进行优化?
结合分数阶傅里叶变换方法。基于分数阶傅里叶变换方法FRFT对线性调频LFM信号参数估计的优点,利用FRFT估计各个模态分量的中心频率,并在信号保真项中增加关于中心频率的约束,从而提高模态分量的分解精度。
变分模态分解是如何被提出的?
受同步压缩小波变换SST中的同步分析和经验小波变换EWT中频域搜索思路,Dragomiretskiy大佬提出了变分模态分解VMD。VMD方法首先在时域构造一个共同优化的目标,该目标在所有成分完全重构原信号的约束下追求所有成分的带宽总和最小(窄带假设)。实际上,该共同优化目标被转换到频域内通过交替乘子法ADMM求解。在频域上,该方法可以看作是对原信号中所有成分频谱系数和中心频率的共同搜索。
VMD由于其频域内严格的窄带约束,共同优化以及傅里叶逆变换的使用,其分解成分具有更加细 致的频率分辨,并且分解出的模态分量更类似于调幅载波正弦的形态。这进一步使得 VMD 具有更高的噪声鲁棒性,对中心频率的估计也比EWT更加准确。
鉴于此,采用几种群体智能算法对变分模态分解进行优化分解,进而对一维时间序列信号进行降噪,运行环境为MATLAB 2018,以遗传优化算法变分模态分解为例:
function [PfvThvec,ind_m,disn_m]= threshvspfa(imfvec,N)
%% Estimation of noise EDF from rejected modes
MC=length(imfvec);
for j=1:floor(MC/N) % loop for all windows
ch=imfvec(N*(j-1)+1:N*j); % pick the jth window
[temp,tind]=ecdf(ch); % calculate ECDF
tv(:,j)=temp(2:end,1); % store value in tv
ti(:,j)=tind(2:end,1); % store index in ti
end
disn_m=mean(tv,2); % take mean value of ECDF values
ind_m=mean(ti,2);
g=0;
N=32;
thresh_min=0.001;
inc=0.001;
thresh_max=20;
%% Threshold versus Pfa curve estimation from rejected modes
threshvec = thresh_min:inc:thresh_max;
pfavec=zeros(length(threshvec),1); % vector for storing Pfa
% imfvec=zeros(s,2,length(threshvec)); % vector for storing Pfa vs Threshold values for all IMFs
% for noofimf=IMF_start:NIMF % for the first NIMF
% noofimf=3;
i=1;
g=g+1;
x=imfvec; % pick an IMF
disnref=disn_m; % pick corresponding ECDF value
indref=ind_m; % pick corresponding ECDF index
for thresh= threshvec % vary threshold
count_detection=0;
for litcount=1:floor(MC/N) % loop for all windows
z=cdfcalc(sort(x(1,N*(litcount-1)+1:N*litcount)),disnref,indref); % calculated F_eta (x)
test=cvm(z,N); % CVM statistic
if test > thresh % compare with threshold
count_detection = count_detection + 1; % increment detection count
end
end
Pfa = count_detection/floor(MC/N); % calculate Pfa
pfavec(i,1)=Pfa; % store Pfa in the vector
i=i+1;
if Pfa < 0.000005
break;
end
end
PfvThvec=[threshvec;pfavec']; % store Pfa vs Threshold values for each IMF here for later use
完整代码:https://mbd.pub/o/bread/mbd-ZJmYm5tp
此外:
MATLAB环境下基于蚁狮优化算法的变分模态分解
https://mbd.pub/o/bread/mbd-ZJmYm5ts
MATLAB环境下基于蓝鲸优化算法的变分模态分解
https://mbd.pub/o/bread/mbd-ZJmYm5pr
MATLAB环境下基于灰狼优化优化算法的变分模态分
https://mbd.pub/o/bread/mbd-ZJmYm5lv
MATLAB环境下基于天鹰优化优化算法的变分模态分解
https://mbd.pub/o/bread/mbd-ZJmYm5dy
擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。
相关推荐
- redis的八种使用场景
-
前言:redis是我们工作开发中,经常要打交道的,下面对redis的使用场景做总结介绍也是对redis举报的功能做梳理。缓存Redis最常见的用途是作为缓存,用于加速应用程序的响应速度。...
- 基于Redis的3种分布式ID生成策略
-
在分布式系统设计中,全局唯一ID是一个基础而关键的组件。随着业务规模扩大和系统架构向微服务演进,传统的单机自增ID已无法满足需求。高并发、高可用的分布式ID生成方案成为构建可靠分布式系统的必要条件。R...
- 基于OpenWrt系统路由器的模式切换与网页设计
-
摘要:目前商用WiFi路由器已应用到多个领域,商家通过给用户提供一个稳定免费WiFi热点达到吸引客户、提升服务的目标。传统路由器自带的Luci界面提供了工厂模式的Web界面,用户可通过该界面配置路...
- 这篇文章教你看明白 nginx-ingress 控制器
-
主机nginx一般nginx做主机反向代理(网关)有以下配置...
- 如何用redis实现注册中心
-
一句话总结使用Redis实现注册中心:服务注册...
- 爱可可老师24小时热门分享(2020.5.10)
-
No1.看自己以前写的代码是种什么体验?No2.DooM-chip!国外网友SylvainLefebvre自制的无CPU、无操作码、无指令计数器...No3.我认为CS学位可以更好,如...
- Apportable:拯救程序员,IOS一秒变安卓
-
摘要:还在为了跨平台使用cocos2d-x吗,拯救objc程序员的奇葩来了,ApportableSDK:FreeAndroidsupportforcocos2d-iPhone。App...
- JAVA实现超买超卖方案汇总,那个最适合你,一篇文章彻底讲透
-
以下是几种Java实现超买超卖问题的核心解决方案及代码示例,针对高并发场景下的库存扣减问题:方案一:Redis原子操作+Lua脚本(推荐)//使用Redis+Lua保证原子性publicbo...
- 3月26日更新 快速施法自动施法可独立设置
-
2016年3月26日DOTA2有一个79.6MB的更新主要是针对自动施法和快速施法的调整本来内容不多不少朋友都有自动施法和快速施法的困扰英文更新日志一些视觉BUG修复就不翻译了主要翻译自动施...
- Redis 是如何提供服务的
-
在刚刚接触Redis的时候,最想要知道的是一个’setnameJhon’命令到达Redis服务器的时候,它是如何返回’OK’的?里面命令处理的流程如何,具体细节怎么样?你一定有问过自己...
- lua _G、_VERSION使用
-
到这里我们已经把lua基础库中的函数介绍完了,除了函数外基础库中还有两个常量,一个是_G,另一个是_VERSION。_G是基础库本身,指向自己,这个变量很有意思,可以无限引用自己,最后得到的还是自己,...
- China's top diplomat to chair third China-Pacific Island countries foreign ministers' meeting
-
BEIJING,May21(Xinhua)--ChineseForeignMinisterWangYi,alsoamemberofthePoliticalBureau...
- 移动工作交流工具Lua推出Insights数据分析产品
-
Lua是一个适用于各种职业人士的移动交流平台,它在今天推出了一项叫做Insights的全新功能。Insights是一个数据平台,客户可以在上面实时看到员工之间的交流情况,并分析这些情况对公司发展的影响...
- Redis 7新武器:用Redis Stack实现向量搜索的极限压测
-
当传统关系型数据库还在为向量相似度搜索的性能挣扎时,Redis7的RedisStack...
- Nginx/OpenResty详解,Nginx Lua编程,重定向与内部子请求
-
重定向与内部子请求Nginx的rewrite指令不仅可以在Nginx内部的server、location之间进行跳转,还可以进行外部链接的重定向。通过ngx_lua模块的Lua函数除了能实现Nginx...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
面试官:git pull是哪两个指令的组合?
-
git 执行pull错误如何撤销 git pull fail
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)