百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

CV学习笔记(二十四):数据集标注与制作

wptr33 2025-06-09 00:43 21 浏览

最近在做一些数据标注的工作,虽然标注数据比较枯燥,但这也是每个做算法的工程师升级打怪的必由之路。使用一些合适的工具往往可以事半功倍,效率UP。

一:数据标注流程

二:数据处理的一些小代码

1:重命名

当得到这样格式命名不一致的数据的时候,重命名是最好的方法。

代码:

#coding=UTF-8
'''
重命名工具
'''
import os
import sys
def rename():
    path=input(r"请输入路径(例如D:\picture):")
    name=input("请输入开头名:")
    startNumber=input("请输入开始数:")
    fileType=input("请输入后缀名(如 .jpg、.txt等等):")
    print("正在生成以"+name+startNumber+fileType+"迭代的文件名")
    count=0
    filelist=os.listdir(path)
    for files in filelist:
        Olddir=os.path.join(path,files)
        if os.path.isdir(Olddir):
            continue
        Newdir=os.path.join(path,name+str(count+int(startNumber))+fileType)
        os.rename(Olddir,Newdir)
        count+=1
    print("一共修改了"+str(count)+"个文件")

if __name__ == '__main__':
    rename()

重命名后的文件会覆盖之前的文件,记得操作之前备份原始数据(如有需要的话)


2:数据标注工具:

对于VOC数据集,使用labelimgs很方便,安装过程也很简单:开源地址如下:
https://github.com/tzutalin/labelImg

如上图所示,框选完口罩后,点击OK会生成一个跟你文件名一致的XML文件,XML中包括有文件路径,文件名称,以及你给的标签等等信息,如下图:

3:划分数据集

因为要符合VOC数据集格式,这里简单说一下VOC数据集格式类型。做深度学习目标检测方面的同学怎么都会接触到PASCAL VOC这个数据集。也许很少用到整个数据集,但是一般都会按照它的格式准备自己的数据集。所以这里就来记录一下PASCAL VOC的格式,包括目录构成以及各个文件夹的内容格式,方便以后自己按照VOC的标准格式制作自己的数据集。

但是我们一般情况下,自己制作数据集不需要Segment开头的,着重关注这三个文件夹:

Annotation文件夹存放的是xml文件,该文件是对图片的解释,每张图片都对于一个同名的xml文件。
ImageSets文件夹存放的是txt文件,这些txt将数据集的图片分成了各种集合。
JPEGImages文件夹存放的是数据集的原图片

转换代码:

import os
import random

xmlfilepath = r'D:/object_find/voc_title/VOCdevkit/VOC2007/Annotations'
saveBasePath = r"D:/object_find/voc_title/VOCdevkit/VOC2007/ImageSets/Main/"

#训练集和验证集所占的比例
trainval_percent = 0.8
train_percent = 0.8

temp_xml = os.listdir(xmlfilepath)
total_xml = []
for xml in temp_xml:
    if xml.endswith(".xml"):
        total_xml.append(xml)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

print("train and val size", tv)
print("traub suze", tr)
#trainval,训练集测试集文件名,train,训练集,test,测试集,val验证集的文件名
ftrainval = open(os.path.join(saveBasePath, 'trainval.txt'), 'w')
ftest = open(os.path.join(saveBasePath, 'test.txt'), 'w')
ftrain = open(os.path.join(saveBasePath, 'train.txt'), 'w')
fval = open(os.path.join(saveBasePath, 'val.txt'), 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

运行结果:

4:XML转TXT

这里要用到XML工具包来匹配一下:

代码:

import xml.etree.ElementTree as ET
from os import getcwd

sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'test')]

classes = ["nomask","rightmask","wrongmask"]
def convert_annotation(year, image_id, list_file):
    in_file = open('D:/object_find/voc_title/VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
    tree=ET.parse(in_file)
    root = tree.getroot()

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult)==1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (int(xmlbox.find('xmin').text), int(xmlbox.find('ymin').text), int(xmlbox.find('xmax').text), int(xmlbox.find('ymax').text))
        list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id))

wd = getcwd()

for year, image_set in sets:
    image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
    list_file = open('%s_%s.txt'%(year, image_set), 'w')
    for image_id in image_ids:
        list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg'%(wd, year, image_id))
        convert_annotation(year, image_id, list_file)
        list_file.write('\n')
    list_file.close()

生成结果:

生成txt文件,包括:图片位置信息,目标位置,类别

相关推荐

redis的八种使用场景

前言:redis是我们工作开发中,经常要打交道的,下面对redis的使用场景做总结介绍也是对redis举报的功能做梳理。缓存Redis最常见的用途是作为缓存,用于加速应用程序的响应速度。...

基于Redis的3种分布式ID生成策略

在分布式系统设计中,全局唯一ID是一个基础而关键的组件。随着业务规模扩大和系统架构向微服务演进,传统的单机自增ID已无法满足需求。高并发、高可用的分布式ID生成方案成为构建可靠分布式系统的必要条件。R...

基于OpenWrt系统路由器的模式切换与网页设计

摘要:目前商用WiFi路由器已应用到多个领域,商家通过给用户提供一个稳定免费WiFi热点达到吸引客户、提升服务的目标。传统路由器自带的Luci界面提供了工厂模式的Web界面,用户可通过该界面配置路...

这篇文章教你看明白 nginx-ingress 控制器

主机nginx一般nginx做主机反向代理(网关)有以下配置...

如何用redis实现注册中心

一句话总结使用Redis实现注册中心:服务注册...

爱可可老师24小时热门分享(2020.5.10)

No1.看自己以前写的代码是种什么体验?No2.DooM-chip!国外网友SylvainLefebvre自制的无CPU、无操作码、无指令计数器...No3.我认为CS学位可以更好,如...

Apportable:拯救程序员,IOS一秒变安卓

摘要:还在为了跨平台使用cocos2d-x吗,拯救objc程序员的奇葩来了,ApportableSDK:FreeAndroidsupportforcocos2d-iPhone。App...

JAVA实现超买超卖方案汇总,那个最适合你,一篇文章彻底讲透

以下是几种Java实现超买超卖问题的核心解决方案及代码示例,针对高并发场景下的库存扣减问题:方案一:Redis原子操作+Lua脚本(推荐)//使用Redis+Lua保证原子性publicbo...

3月26日更新 快速施法自动施法可独立设置

2016年3月26日DOTA2有一个79.6MB的更新主要是针对自动施法和快速施法的调整本来内容不多不少朋友都有自动施法和快速施法的困扰英文更新日志一些视觉BUG修复就不翻译了主要翻译自动施...

Redis 是如何提供服务的

在刚刚接触Redis的时候,最想要知道的是一个’setnameJhon’命令到达Redis服务器的时候,它是如何返回’OK’的?里面命令处理的流程如何,具体细节怎么样?你一定有问过自己...

lua _G、_VERSION使用

到这里我们已经把lua基础库中的函数介绍完了,除了函数外基础库中还有两个常量,一个是_G,另一个是_VERSION。_G是基础库本身,指向自己,这个变量很有意思,可以无限引用自己,最后得到的还是自己,...

China's top diplomat to chair third China-Pacific Island countries foreign ministers' meeting

BEIJING,May21(Xinhua)--ChineseForeignMinisterWangYi,alsoamemberofthePoliticalBureau...

移动工作交流工具Lua推出Insights数据分析产品

Lua是一个适用于各种职业人士的移动交流平台,它在今天推出了一项叫做Insights的全新功能。Insights是一个数据平台,客户可以在上面实时看到员工之间的交流情况,并分析这些情况对公司发展的影响...

Redis 7新武器:用Redis Stack实现向量搜索的极限压测

当传统关系型数据库还在为向量相似度搜索的性能挣扎时,Redis7的RedisStack...

Nginx/OpenResty详解,Nginx Lua编程,重定向与内部子请求

重定向与内部子请求Nginx的rewrite指令不仅可以在Nginx内部的server、location之间进行跳转,还可以进行外部链接的重定向。通过ngx_lua模块的Lua函数除了能实现Nginx...