Scrapy 爬虫完整案例-提升篇(scraper爬虫)
wptr33 2025-05-08 06:56 22 浏览
1 Scrapy 爬虫完整案例-提升篇
1.1 Scrapy 爬虫进阶案例一
Scrapy 爬虫案例:东莞阳光热线问政平台。
网站地址:
http://wz.sun0769.com/index.php/question/questionType?type=4
项目的目标:爬取投诉帖子的编号、帖子的url、帖子的标题,和帖子里的内容。
案例步骤:
第一步:创建项目。
在 dos下切换到目录
D:\scrapy_project
新建一个新的爬虫项目:scrapy startproject dg_sun
第二步:明确需要爬取的内容字段,分析网站的结构( URL、需要爬取的字段的结构)。
【分析分页URL地址】
从图片中看到投诉信息列表有3192页。
第一页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=0
第二页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=30
最后一页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=95730
通过分析我们得知,每一页的的链接地址page的值递增30,就是下一页的地址。
【分析每一条投诉信息】
在列表里点某条投诉信息,进入到某条投诉详情页。
投诉信息的编号、标题、内容如下:
查看这些字段在页面里的位置。
通过对页面的分析,得出需要保存的数据字段在页面上的位置。
#标题
title=response.xpath('//div[contains(@class, "pagecenterp3")]//strong/text()').extract()[0]
# 编号是标题里的一部分,通过字符串切片,得到编号的内容。
id =title.split(' ')[-1].split(":")[-1]
# 内容
content =response.xpath('//div[@class="c1 text14_2"]/text()').extract()[0]
#链接就是请求返回的URL
url=response.url
第三步:编写 items.py 文件,设置好需要保存的数据字段。
import scrapy
class SunItem(scrapy.Item):
# define the fields for your item here like:
# 标题
title = scrapy.Field()
# 编号
id = scrapy.Field()
# 内容
content = scrapy.Field()
# 链接
url = scrapy.Field()
第四步:创建爬虫。
在 dos下切换到目录
D:\scrapy_project\dg_sun\dg_sun\spiders
用命令 scrapy genspider -t crawl sun " wz.sun0769.com " 创建爬虫。
第五步:编写爬虫文件。
import scrapy,sys,os
# 导入CrawlSpider类和Rule
from scrapy.spiders import CrawlSpider, Rule
# 导入链接规则匹配类,用来提取符合规则的连接
from scrapy.linkextractors import LinkExtractor
path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(path)
from dg_sun.items import SunItem
class SunSpider(CrawlSpider):
name = 'sun'
allowed_domains = ['wz.sun0769.com']
start_urls = ['http://wz.sun0769.com/index.php/question/questionType?type=4&page=0']
#多条 Rule
rules = (
Rule(LinkExtractor(allow=r'type=4&page=\d+')),
Rule(LinkExtractor(allow=r'/html/question/\d+/\d+.shtml'), callback = 'parse_item',follow = True),
)
def parse_item(self, response):
item = SunItem()
#标题
item['title'] = response.xpath('//div[contains(@class, "pagecenter p3")]//strong/text()').extract()[0]
# 编号
item['id'] = item['title'].split(' ')[-1].split(":")[-1]
# 内容
item['content'] = response.xpath('//div[@class="c1 text14_2"]/text()').extract()[0]
# 链接
item['url'] = response.url
yield item
第六步:编写管道文件:SunPipeline。
import json
class SunPipeline(object):
# __init__方法是可选的,做为类的初始化方法
def __init__(self):
# 创建了一个 sun.json 文件,用来保存数据
self.filename = open("sun.json", "wb")
# process_item方法是必须写的,用来处理item数据
def process_item(self, item, spider):
text = json.dumps(dict(item), ensure_ascii = False) + ",\n"
# 把数据写入到sun.json 文件中,编码为:utf-8
self.filename.write(text.encode("utf-8"))
return item
# close_spider方法是可选的,结束时调用这个方法
def close_spider(self, spider):
self.filename.close()
第七步:修改 settings 文件。
在settings.py文件配置里指定刚才编写的管道文件名:SunPipeline。
设置爬虫请求的默认头信息。
第八步:运行爬虫。
在 dos下切换到目录
D:\scrapy_project\dg_sun\dg_sun 下
通过命令运行爬虫 :scrapy crawl sun
第九步:查看爬取的结果。
查看新建的sun.json 数据文件。
1.2 Scrapy 爬虫进阶案例二
Scrapy 爬虫案例二:完善东莞阳光热线问政平台案例。
上面我们讲解了Scrapy 爬虫案例:东莞阳光热线问政平台。查看爬取后的数据,发现3个问题。
(问题一)提取的投诉内容前面有空格。
(问题二)个别投诉帖子,提取的内容不全,例如下面帖子有2段话,只是提取了第一段话:
{"id": "195592 ", "title": " 提问:南城宏远外国语学校门口交通秩序混乱 编号:195592 ", "content": " 开学季到来,金丰路宏远外国语学校路段每天早上又恢复塞车,此路段有宏外及阳光二小两所学校,每天早上学生家长送孩子上学车辆十分密集,加上周边小区居民上班高峰,极易造成塞车,更要命的是宏外路口卖花,卖水果三轮车偏偏停在路口,宏外学生家长路边随意停车,没有做到即停即走,其实家长只要停车把孩子交给学校义工或保安就可以开车离开了,而很多家长都是停车然后送孩子进学校再出来开车,而这时候后面车龙已经排的很长了,有些司机加塞抢道更是加重了道路的拥堵。", "url": "
http://wz.sun0769.com/html/question/201809/384482.shtml"},
分析页面的结构:
1、内容如果有几段话,每一段话有个<br>
2、每段话前有一串字符:  (文本里的空字符);
通过 XPath helper 去定位内容,查看结果是 OK 的。
item['content'] = response.xpath('//div[@class="c1 text14_2"]/text()').extract()返回的是文本列表,在我们在代码里取得是 extract()[0],所以取得内容是第一段话。
修改爬虫文件代码,只取 content 内容,看爬取得到的结果是什么。
运行的结果:
其中一条数据:{"content": [" 1.城轨D出口长期封闭导致红珊瑚附近居民跨越马路,造成相关大的安全隐患!", " 2.广铁的工作人员说领导说不准开,成本太高。但是附近那么多居民横跨马路如果一旦造成人员伤亡是否广铁公司或者松山湖管委会负责人?", " 3.若觉得成本太高,可以开放楼梯让乘客走下去和上来,", " 这么多投诉之后管委会,请问下这就是为人民服务的政府吗?", " 今天下班看到一大群人在路中间跑来跑去,出人命的时候想问下管委会是怎么给人民交代!", " "]},
问题一和问题二处理的方案:
#获取每个投诉的 content 内容列表
content = response.xpath('//div[@class="c1 text14_2"]/text()').extract()
#把列表转化成字符串,并去掉前面的空格
item['content'] = "".join(content).strip()
重新运行看结果:
(问题三)很多投诉内容为空。
经过分析页面,发现个别投诉信息上传了图片。
页面元素分析:
如果投诉有图片,内容的路径是如下:
content = response.xpath('//div[@class="contentext"]/text()').extract()
问题三的处理方案:修改爬虫代码
# 内容,先使用有图片情况下的匹配规则,如果有内容,返回所有内容的列表集合
content = response.xpath('//div[@class="contentext"]/text()').extract()
# 如果没有内容,则返回空列表,则使用无图片情况下的匹配规则
if len(content) == 0:
content = response.xpath('//div[@class="c1 text14_2"]/text()').extract()
item['content'] = "".join(content).strip()
else:
item['content'] = "".join(content).strip()
分析完问题,有了处理方案之后,重新完整的实现爬虫案例。
案例步骤:
第一步:创建项目。
在 dos下切换到目录
D:\scrapy_project
新建一个新的爬虫项目:scrapy startproject dg_sun2
第二步:明确需要爬取的内容字段,分析网站的结构( URL、需要爬取的字段的结构)。
【分析分页URL地址】
从图片中看到投诉信息列表有3192页。
第一页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=0
第二页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=30
最后一页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=95730
通过分析我们得知,每一页的的链接地址page的值递增30,就是下一页的地址。
【分析每一条投诉信息】
在列表里点某条投诉信息,进入到某条投诉详情页。
投诉信息的编号、标题、内容如下:
查看这些字段在页面里的位置。
通过对页面的分析,得出需要保存的数据字段在页面上的位置。
#标题
title=response.xpath('//div[contains(@class, "pagecenterp3")]//strong/text()').extract()[0]
# 编号是标题里的一部分,通过字符串切片,得到编号的内容。
id =title.split(' ')[-1].split(":")[-1]
# 内容,先使用有图片情况下的匹配规则,如果有内容,返回所有内容的列表集合
content = response.xpath('//div[@class="contentext"]/text()').extract()
# 如果没有内容,则返回空列表,则使用无图片情况下的匹配规则
if len(content) == 0:
content = response.xpath('//div[@class="c1 text14_2"]/text()').extract()
item['content'] = "".join(content).strip()
else:
item['content'] = "".join(content).strip()
#链接就是请求返回的URL
url=response.url
第三步:编写 items.py 文件,设置好需要保存的数据字段。
import scrapy
class SunItem(scrapy.Item):
# define the fields for your item here like:
# 标题
title = scrapy.Field()
# 编号
id = scrapy.Field()
# 内容
content = scrapy.Field()
# 链接
url = scrapy.Field()
第四步:创建爬虫。
在 dos下切换到目录
D:\scrapy_project\dg_sun\dg_sun\spiders
用命令 scrapy genspider -t crawl sun " wz.sun0769.com " 创建爬虫。
第五步:编写爬虫文件。
import scrapy,sys,os
# 导入CrawlSpider类和Rule
from scrapy.spiders import CrawlSpider, Rule
# 导入链接规则匹配类,用来提取符合规则的连接
from scrapy.linkextractors import LinkExtractor
path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(path)
from dg_sun.items import SunItem
class SunSpider(CrawlSpider):
name = 'sun'
allowed_domains = ['wz.sun0769.com']
start_urls = ['http://wz.sun0769.com/index.php/question/questionType?type=4&page=0']
# 投诉分页链接的提取规则,返回的符合匹配规则的链接匹配对象的列表(这里提取的是分页的链接)
pagelink = LinkExtractor(allow=r'type=4&page=\d+')
# 投诉详情页内容链接的提取规则,返回的符合匹配规则的链接匹配对象的列表
Details = LinkExtractor(allow=r'/html/question/\d+/\d+.shtml')
# 多条 Rule
rules = (
# 提取匹配,并跟进链接(没有 callback 意味着 follow 默认为 True )
Rule(pagelink),
Rule(Details, callback='parse_item', follow=True),
)
# 指定的回调函数
def parse_item(self, response):
item = SunItem()
# 标题
item['title'] = response.xpath('//div[contains(@class, "pagecenter p3")]//strong/text()').extract()[0]
# 编号
item['id'] = item['title'].split(' ')[-1].split(":")[-1]
# 内容,先使用有图片情况下的匹配规则,如果有内容,返回所有内容的列表集合
content = response.xpath('//div[@class="contentext"]/text()').extract()
# 如果没有内容,则返回空列表,则使用无图片情况下的匹配规则
if len(content) == 0:
content = response.xpath('//div[@class="c1 text14_2"]/text()').extract()
item['content'] = "".join(content).strip()
else:
item['content'] = "".join(content).strip()
# 链接
item['url'] = response.url
yield item
第六步:编写管道文件:SunPipeline。
import json
class SunPipeline(object):
# __init__方法是可选的,做为类的初始化方法
def __init__(self):
# 创建了一个 sun.json 文件,用来保存数据
self.filename = open("sun.json", "wb")
# process_item方法是必须写的,用来处理item数据
def process_item(self, item, spider):
text = json.dumps(dict(item), ensure_ascii = False) + ",\n"
# 把数据写入到sun.json 文件中,编码为:utf-8
self.filename.write(text.encode("utf-8"))
return item
# close_spider方法是可选的,结束时调用这个方法
def close_spider(self, spider):
self.filename.close()
第七步:修改 settings 文件。
在settings.py文件配置里指定刚才编写的管道文件名:SunPipeline。
设置爬虫请求的默认头信息。
第八步:运行爬虫。
在 dos下切换到目录
D:\scrapy_project\dg_sun2\dg_sun 下
通过命令运行爬虫 :scrapy crawl sun
第九步:查看爬取的结果。
查看新建的sun.json 数据文件。
1.3 Scrapy 爬虫进阶案例三
Scrapy 爬虫案例三:用 Spider 类改写“东莞阳光热线问政平台”案例。
案例步骤:
第一步:创建项目。
在 dos下切换到目录
D:\scrapy_project
新建一个新的爬虫项目:scrapy startproject dg_sun3
第二步:明确需要爬取的内容字段,分析网站的结构( URL、需要爬取的字段的结构)。
【分析分页URL地址】
从图片中看到投诉信息列表有3192页。
第一页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=0
第二页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=30
最后一页的链接地址:
http://wz.sun0769.com/index.php/question/questionType?type=4&page=95730
通过分析我们得知,每一页的的链接地址page的值递增30,就是下一页的地址。
【每一页帖子的链接集合】
# 每一页帖子的链接集合
links = response.xpath('//div[@class="greyframe"]/table/a[@class="news14"]/@href').extract()
【分析每一条投诉字段信息】
在列表里点某条投诉信息,进入到某条投诉详情页。
投诉信息的编号、标题、内容如下:
查看这些字段在页面里的位置。
通过对页面的分析,得出需要保存的数据字段在页面上的位置。
# 标题
title=response.xpath('//div[contains(@class, "pagecenterp3")]//strong/text()').extract()[0]
# 编号是标题里的一部分,通过字符串切片,得到编号的内容。
id =title.split(' ')[-1].split(":")[-1]
# 内容,先使用有图片情况下的匹配规则,如果有内容,返回所有内容的列表集合
content = response.xpath('//div[@class="contentext"]/text()').extract()
# 如果没有内容,则返回空列表,则使用无图片情况下的匹配规则
if len(content) == 0:
content = response.xpath('//div[@class="c1 text14_2"]/text()').extract()
item['content'] = "".join(content).strip()
else:
item['content'] = "".join(content).strip()
第三步:编写 items.py 文件,设置好需要保存的数据字段。
import scrapy
class SunItem(scrapy.Item):
# define the fields for your item here like:
# 标题
title = scrapy.Field()
# 编号
id = scrapy.Field()
# 内容
content = scrapy.Field()
# 链接
url = scrapy.Field()
第四步:创建爬虫。
在 dos下切换到目录
D:\scrapy_project\dg_sun3\dg_sun\spiders
用命令 scrapy genspider sun " wz.sun0769.com " 创建爬虫。
第五步:编写爬虫文件。
import scrapy,sys,os
path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(path)
from dg_sun.items import SunItem
class SunSpider(scrapy.Spider):
name = 'sun'
allowed_domains = ['wz.sun0769.com']
url = 'http://wz.sun0769.com/index.php/question/questionType?type=4&page='
offset = 0
start_urls = [url + str(offset)]
# 第一个方法 :parse(self, response),处理(提取)每一页链接。
def parse(self, response):
# 每一页帖子的链接集合
links = response.xpath('//div[@class="greyframe"]/table//td/a[@class="news14"]/@href').extract()
# 迭代取出集合里的链接。
for link in links:
# 提取列表里的每个链接,发送请求,放到请求队列里,并调用回调函数 parse_item(self, response)来处理。
yield scrapy.Request(link,callback=self.parse_item)
#offset 不断自增,直到最后一页,在停止自增前,不断发送新的页面请求,并调用自己(parse()方法)来处理。
if self.offset <= 95730:
self.offset += 30
# 发送请求,放到请求队列里,调用 self.parse()方法。
yield scrapy.Request(self.url+str(self.offset), callback=self.parse)
# 第二个方法 :parse_item(self, response),处理每一页的每一个帖子。
def parse_item(self, response):
item = SunItem()
# 标题
item['title'] = response.xpath('//div[contains(@class, "pagecenter p3")]//strong/text()').extract()[0]
# 编号
item['id'] = item['title'].split(' ')[-1].split(":")[-1]
# 内容,先使用有图片情况下的匹配规则,如果有内容,返回所有内容的列表集合
content = response.xpath('//div[@class="contentext"]/text()').extract()
# 如果没有内容,则返回空列表,则使用无图片情况下的匹配规则
if len(content) == 0:
content = response.xpath('//div[@class="c1 text14_2"]/text()').extract()
item['content'] = "".join(content).strip()
else:
item['content'] = "".join(content).strip()
# 链接
item['url'] = response.url
# item 交给管道
yield item
第六步:编写管道文件:SunPipeline。
import json
class SunPipeline(object):
# __init__方法是可选的,做为类的初始化方法
def __init__(self):
# 创建了一个 sun3.json 文件,用来保存数据
self.filename = open("sun3.json", "wb")
# process_item方法是必须写的,用来处理item数据
def process_item(self, item, spider):
text = json.dumps(dict(item), ensure_ascii = False) + ",\n"
# 把数据写入到sun3.json 文件中,编码为:utf-8
self.filename.write(text.encode("utf-8"))
return item
# close_spider方法是可选的,结束时调用这个方法
def close_spider(self, spider):
self.filename.close()
第七步:修改 settings 文件。
在settings.py文件配置里指定刚才编写的管道文件名:SunPipeline。
设置爬虫请求的默认头信息。
第八步:运行爬虫。
在 dos下切换到目录
D:\scrapy_project\dg_sun3\dg_sun 下
通过命令运行爬虫 :scrapy crawl sun
首先提取列表里的每个链接,发送请求,放到请求队列里,然后再爬取每个投诉的相关信息。
第九步:查看爬取的结果。
查看新建的 sun3.json 数据文件。
相关推荐
- 高性能并发队列Disruptor使用详解
-
基本概念Disruptor是一个高性能的异步处理框架,是一个轻量的Java消息服务JMS,能够在无锁的情况下实现队列的并发操作Disruptor使用环形数组实现了类似队列的功能,并且是一个有界队列....
- Disruptor一个高性能队列_java高性能队列
-
Disruptor一个高性能队列前言说到队列比较熟悉的可能是ArrayBlockingQueue、LinkedBlockingQueue这两个有界队列,大多应用在线程池中使用能保证线程安全,但其安全性...
- 谈谈防御性编程_防御性策略
-
防御性编程对于程序员来说是一种良好的代码习惯,是为了保护自己的程序在不可未知的异常下,避免带来更大的破坏性崩溃,使得程序在错误发生时,依然能够云淡风轻的处理,但很多程序员入行很多年,写出的代码依然都是...
- 有人敲门,开水开了,电话响了,孩子哭了,你先顾谁?
-
前言哎呀,这种情况你肯定遇到过吧!正在家里忙活着,突然——咚咚咚有人敲门,咕噜咕噜开水开了,铃铃铃电话响了,哇哇哇孩子又哭了...我去,四件事一起来,人都懵了!你说先搞哪个?其实这跟我们写Java多线...
- 面试官:线程池如何按照core、max、queue的执行顺序去执行?
-
前言这是一个真实的面试题。前几天一个朋友在群里分享了他刚刚面试候选者时问的问题:"线程池如何按照core、max、queue的执行循序去执行?"。我们都知道线程池中代码执行顺序是:co...
- 深入剖析 Java 中线程池的多种实现方式
-
在当今高度并发的互联网软件开发领域,高效地管理和利用线程资源是提升程序性能的关键。Java作为一种广泛应用于后端开发的编程语言,为我们提供了丰富的线程池实现方式。今天,就让我们深入探讨Java中...
- 并发编程之《彻底搞懂Java线程》_java多线程并发解决方案详解
-
目录引言一、核心概念:线程是什么?...
- Redis怎么实现延时消息_redis实现延时任务
-
一句话总结Redis可通过有序集合(ZSET)实现延时消息:将消息作为value,到期时间戳作为score存入ZSET。消费者轮询用ZRANGEBYSCORE获取到期消息,配合Lua脚本保证原子性获取...
- CompletableFuture真的用对了吗?盘点它最容易被误用的5个场景
-
在Java并发编程中,CompletableFuture是处理异步任务的利器,但不少开发者在使用时踩过这些坑——线上服务突然雪崩、异常悄无声息消失、接口响应时间翻倍……本文结合真实案例,拆解5个最容易...
- 接口性能优化技巧,有点硬_接口性能瓶颈
-
背景我负责的系统到2021年初完成了功能上的建设,开始进入到推广阶段。随着推广的逐步深入,收到了很多好评的同时也收到了很多对性能的吐槽。刚刚收到吐槽的时候,我们的心情是这样的:...
- 禁止使用这5个Java类,每一个背后都有一段"血泪史"
-
某电商平台的支付系统突然报警:大量订单状态异常。排查日志发现,同一笔订单被重复支付了三次。事后复盘显示,罪魁祸首竟是一行看似无害的SimpleDateFormat代码。在Java开发中,这类因使用不安...
- 无锁队列Disruptor原理解析_无锁队列实现原理
-
队列比较队列...
- Java并发队列与容器_java 并发队列
-
【前言:无论是大数据从业人员还是Java从业人员,掌握Java高并发和多线程是必备技能之一。本文主要阐述Java并发包下的阻塞队列和并发容器,其实研读过大数据相关技术如Spark、Storm等源码的,...
- 线程池工具及拒绝策略的使用_线程池处理策略
-
线程池的拒绝策略若线程池中的核心线程数被用完且阻塞队列已排满,则此时线程池的资源已耗尽,线程池将没有足够的线程资源执行新的任务。为了保证操作系统的安全,线程池将通过拒绝策略处理新添加的线程任务。...
- 【面试题精讲】ArrayBlockingQueue 和 LinkedBlockingQueue 区别?
-
有的时候博客内容会有变动,首发博客是最新的,其他博客地址可能会未同步,认准...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
程序员的开源月刊《HelloGitHub》第 71 期
-
详细介绍一下Redis的Watch机制,可以利用Watch机制来做什么?
-
假如有100W个用户抢一张票,除了负载均衡办法,怎么支持高并发?
-
如何将AI助手接入微信(打开ai手机助手)
-
Java面试必考问题:什么是乐观锁与悲观锁
-
SparkSQL——DataFrame的创建与使用
-
redission YYDS spring boot redission 使用
-
一文带你了解Redis与Memcached? redis与memcached的区别
-
如何利用Redis进行事务处理呢? 如何利用redis进行事务处理呢英文
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)