mysql窗口函数(mysql窗口函数lag)
wptr33 2025-04-07 20:06 18 浏览
MySQL 窗口函数是一种高级的 SQL 函数,它可以进行一些比较复杂的数据分析和处理。与传统的聚合函数不同,窗口函数不会合并行,而是根据特定的条件为每行分配一个值。
MySQL 窗口函数可以用来计算每个行的聚合值,而不需要合并行,因此可以保留原始数据的所有细节。常见的 MySQL 窗口函数包括:
- ROW_NUMBER:给每行分配一个唯一的数字,可以用来计算排名。
- RANK:计算每行的排名,如果有相同值,则排名相同,下一个排名会跳过重复的行。
- DENSE_RANK:计算每行的排名,如果有相同值,则排名相同,下一个排名不会跳过重复的行。
- LEAD:获取当前行之后的指定偏移量的值。
- LAG:获取当前行之前的指定偏移量的值。
- FIRST_VALUE:获取分组中第一行的值。
- LAST_VALUE:获取分组中最后一行的值。
- SUM、AVG、COUNT、MAX、MIN 等聚合函数。
使用 MySQL 窗口函数需要用到 OVER 子句,它用来定义窗口的边界,包括窗口大小、排序规则、分区等。以下是一个例子:
SELECT department, name, salary, ROW_NUMBER() OVER (PARTITION BY department ORDER BY salary DESC) AS rank FROM employee;
这个查询使用 ROW_NUMBER 窗口函数计算每个部门员工的工资排名,PARTITION BY 子句指定了分区列,ORDER BY 子句指定了排序规则。
以下是一些 MySQL 窗口函数以及它们在处理复杂场景数据时的示例:
- ROW_NUMBER
ROW_NUMBER() 函数用于为每一行分配一个唯一的数字,通常用于排序或排名。例如,假设我们有一个表格 employees,其中包含每个部门的员工,我们可以使用 ROW_NUMBER() 函数为每个部门的员工计算排名:
SELECT department, name, salary, ROW_NUMBER() OVER (PARTITION BY department ORDER BY salary DESC) AS rank FROM employees;
这将为每个部门内的员工按工资降序排名,并在每个部门内为每个员工分配一个排名。
- RANK
RANK() 函数用于计算每行的排名,如果有相同的值,则排名相同,下一个排名会跳过重复的行。例如,假设我们有一个表格 sales,其中包含每个销售员的销售额,我们可以使用 RANK() 函数为每个销售员计算排名:
SELECT salesman, sales, RANK() OVER (ORDER BY sales DESC) AS rank FROM sales;
这将按销售额降序排列销售员,并为每个销售员分配一个排名。如果两个销售员的销售额相同,则它们将获得相同的排名,而下一个排名将跳过这两个销售员。
- DENSE_RANK
DENSE_RANK() 函数与 RANK() 函数类似,但是它不会跳过重复的排名。例如,假设我们有一个表格 sales,其中包含每个销售员的销售额,我们可以使用 DENSE_RANK() 函数为每个销售员计算排名:
SELECT salesman, sales, DENSE_RANK() OVER (ORDER BY sales DESC) AS rank FROM sales;
这将按销售额降序排列销售员,并为每个销售员分配一个排名。如果两个销售员的销售额相同,则它们将获得相同的排名,下一个排名将不会跳过这两个销售员。
- LEAD
LEAD() 函数用于获取当前行之后的指定偏移量的值。例如,假设我们有一个表格 orders,其中包含每个客户的订单和订单日期,我们可以使用 LEAD() 函数获取每个客户的下一个订单日期:
SELECT customer, order_date, LEAD(order_date, 1) OVER (PARTITION BY customer ORDER BY order_date) AS next_order_date FROM orders;
这将按客户和订单日期对订单进行分区,并为每个订单获取下一个订单日期。
- LAG
LAG() 函数用于获取窗口中指定列的前一行的值。例如,假设我们有一个表格 sales,其中包含每个销售员的销售额和日期,我们可以使用 LAG() 函数计算每个销售员的销售额与前一天相比的增长率:
SELECT salesman, sale_date, sales, LAG(sales) OVER (PARTITION BY salesman ORDER BY sale_date) AS previous_sales, (sales - LAG(sales) OVER (PARTITION BY salesman ORDER BY sale_date)) / LAG(sales) OVER (PARTITION BY salesman ORDER BY sale_date) AS growth_rate FROM sales;
这将按销售员和日期对销售进行分区,并使用 LAG() 函数获取前一天的销售额,然后计算增长率。
- FIRST_VALUE
FIRST_VALUE() 函数用于获取窗口中指定列的第一行的值。例如,假设我们有一个表格 employees,其中包含每个部门的员工和薪资,我们可以使用 FIRST_VALUE() 函数计算每个部门的最高薪资员工:
SELECT department, name, salary, FIRST_VALUE(name) OVER (PARTITION BY department ORDER BY salary DESC) AS highest_salary_employee FROM employees;
这将按部门对员工进行分区,并使用 FIRST_VALUE() 函数获取薪资最高的员工的名称。
- LAST_VALUE
LAST_VALUE() 函数用于获取窗口中指定列的最后一行的值。例如,假设我们有一个表格 logs,其中包含每个用户的登录时间和日期,我们可以使用 LAST_VALUE() 函数计算每个用户最后一次登录的时间:
SELECT user, login_time, LAST_VALUE(login_time) OVER (PARTITION BY user ORDER BY login_time) AS last_login_time FROM logs;
这将按用户和登录时间对日志进行分区,并使用 LAST_VALUE() 函数获取每个用户最后一次登录的时间。
- SUM
SUM() 函数用于计算窗口中指定列的总和。例如,假设我们有一个表格 sales,其中包含每个销售员的销售额和日期,我们可以使用 SUM() 函数计算每个销售员的累计销售额:
SELECT salesman, sale_date, sales, SUM(sales) OVER (PARTITION BY salesman ORDER BY sale_date) AS cumulative_sales FROM sales;
这将按销售员和日期对销售进行分区,并为每个销售员计算累计销售额。
- AVG
AVG() 函数用于计算窗口中指定列的平均值。例如,假设我们有一个表格 employees,其中包含每个部门的员工和薪资,我们可以使用 AVG() 函数计算每个部门的平均工资:
SELECT department, name, salary, AVG(salary) OVER (PARTITION BY department) AS avg_salary FROM employees;
这将按部门对员工进行分区,并为每个部门计算平均工资。
- MAX
MAX() 函数用于计算窗口中指定列的最大值。例如,假设我们有一个表格 products,其中包含每个产品的价格和制造商,我们可以使用 MAX() 函数计算每个制造商的最高价格产品:
SELECT manufacturer, product, price, MAX(price) OVER (PARTITION BY manufacturer) AS max_price FROM products;
这将按制造商对产品进行分区,并为每个制造商计算最高价格。
- MIN
MIN() 函数用于计算窗口中指定列的最小值。例如,假设我们有一个表格 orders,其中包含每个客户的订单和订单日期,我们可以使用 MIN() 函数计算每个客户的最早订单日期:
SELECT customer, order_date, MIN(order_date) OVER (PARTITION BY customer) AS first_order_date FROM orders;
这将按客户对订单进行分区,并为每个客户计算最早订单日期。
- COUNT
COUNT() 函数用于计算窗口中指定列的行数。例如,假设我们有一个表格 logs,其中包含每个用户的登录时间和日期,我们可以使用 COUNT() 函数计算每个用户在过去一小时内的登录次数:
SELECT user, login_time, COUNT(*) OVER (PARTITION BY user ORDER BY login_time RANGE BETWEEN INTERVAL 1 HOUR PRECEDING AND CURRENT ROW) AS login_count_last_hour FROM logs;
这将按用户和登录时间对日志进行分区,并为每个用户计算过去一小时内的登录次数。注意,在此示例中,我们使用 RANGE 子句指定窗口的范围。这将计算从当前行开始向前一个小时内的所有行的计数。
综上所述,MySQL 窗口函数可以进行一些比较复杂的数据分析和处理,常见的窗口函数包括 ROW_NUMBER、RANK、DENSE_RANK、LEAD、LAG、FIRST_VALUE、LAST_VALUE 和聚合函数等。使用 MySQL 窗口函数需要用到 OVER 子句来定义窗口的边界,包括窗口大小、排序规则、分区等。
相关推荐
- redis的八种使用场景
-
前言:redis是我们工作开发中,经常要打交道的,下面对redis的使用场景做总结介绍也是对redis举报的功能做梳理。缓存Redis最常见的用途是作为缓存,用于加速应用程序的响应速度。...
- 基于Redis的3种分布式ID生成策略
-
在分布式系统设计中,全局唯一ID是一个基础而关键的组件。随着业务规模扩大和系统架构向微服务演进,传统的单机自增ID已无法满足需求。高并发、高可用的分布式ID生成方案成为构建可靠分布式系统的必要条件。R...
- 基于OpenWrt系统路由器的模式切换与网页设计
-
摘要:目前商用WiFi路由器已应用到多个领域,商家通过给用户提供一个稳定免费WiFi热点达到吸引客户、提升服务的目标。传统路由器自带的Luci界面提供了工厂模式的Web界面,用户可通过该界面配置路...
- 这篇文章教你看明白 nginx-ingress 控制器
-
主机nginx一般nginx做主机反向代理(网关)有以下配置...
- 如何用redis实现注册中心
-
一句话总结使用Redis实现注册中心:服务注册...
- 爱可可老师24小时热门分享(2020.5.10)
-
No1.看自己以前写的代码是种什么体验?No2.DooM-chip!国外网友SylvainLefebvre自制的无CPU、无操作码、无指令计数器...No3.我认为CS学位可以更好,如...
- Apportable:拯救程序员,IOS一秒变安卓
-
摘要:还在为了跨平台使用cocos2d-x吗,拯救objc程序员的奇葩来了,ApportableSDK:FreeAndroidsupportforcocos2d-iPhone。App...
- JAVA实现超买超卖方案汇总,那个最适合你,一篇文章彻底讲透
-
以下是几种Java实现超买超卖问题的核心解决方案及代码示例,针对高并发场景下的库存扣减问题:方案一:Redis原子操作+Lua脚本(推荐)//使用Redis+Lua保证原子性publicbo...
- 3月26日更新 快速施法自动施法可独立设置
-
2016年3月26日DOTA2有一个79.6MB的更新主要是针对自动施法和快速施法的调整本来内容不多不少朋友都有自动施法和快速施法的困扰英文更新日志一些视觉BUG修复就不翻译了主要翻译自动施...
- Redis 是如何提供服务的
-
在刚刚接触Redis的时候,最想要知道的是一个’setnameJhon’命令到达Redis服务器的时候,它是如何返回’OK’的?里面命令处理的流程如何,具体细节怎么样?你一定有问过自己...
- lua _G、_VERSION使用
-
到这里我们已经把lua基础库中的函数介绍完了,除了函数外基础库中还有两个常量,一个是_G,另一个是_VERSION。_G是基础库本身,指向自己,这个变量很有意思,可以无限引用自己,最后得到的还是自己,...
- China's top diplomat to chair third China-Pacific Island countries foreign ministers' meeting
-
BEIJING,May21(Xinhua)--ChineseForeignMinisterWangYi,alsoamemberofthePoliticalBureau...
- 移动工作交流工具Lua推出Insights数据分析产品
-
Lua是一个适用于各种职业人士的移动交流平台,它在今天推出了一项叫做Insights的全新功能。Insights是一个数据平台,客户可以在上面实时看到员工之间的交流情况,并分析这些情况对公司发展的影响...
- Redis 7新武器:用Redis Stack实现向量搜索的极限压测
-
当传统关系型数据库还在为向量相似度搜索的性能挣扎时,Redis7的RedisStack...
- Nginx/OpenResty详解,Nginx Lua编程,重定向与内部子请求
-
重定向与内部子请求Nginx的rewrite指令不仅可以在Nginx内部的server、location之间进行跳转,还可以进行外部链接的重定向。通过ngx_lua模块的Lua函数除了能实现Nginx...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
面试官:git pull是哪两个指令的组合?
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git 执行pull错误如何撤销 git pull fail
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)