百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

算法干货 | 朴素贝叶斯分类

wptr33 2025-02-27 16:55 14 浏览

分类算法是机器学习算法中的一种,用来判断给定数据项所属的类别,即种类或类型。比如,可以根据某些特征来分辨一部电影属于哪个流派,等等。这样,流派就是我们要预测的类别。第10章“预测性分析与机器学习”还会对机器学习做进一步介绍。此刻,我们要讨论的是一个名为朴素贝叶斯分类的流行算法,它常常用于进行文本文档的研究。

朴素贝叶斯分类是一个概率算法,它基于概率与数理统计中的贝叶斯定理。贝叶斯定理给出了如何利用新证据修正某事件发生的概率的方法。例如,假设一个袋子里装有一些巧克力和其他物品,但是这些我们没法看到。这时,我们可以用P(D)表示从袋子中掏出一块深色巧克力的概率。同时,我们用P(C)代表掏出一块巧克力的概率。当然,因为全概率是1,所以P(D)和P(C)的最大取值也只能是1。贝叶斯定理指出,后验概率与先验概率和相似度的乘积成正比,具体公式如下所示:


上面公式中,P(C|D)是在事件C发生的情况下事件D发生的可能性。在我们还没有掏出任何物品之前,P(D)= 0.5,因为我们尚未获得任何信息。实际应用这个公式时,必须知道P(C|D)和P(C),或者能够间接求出这两个概率。

朴素贝叶斯分类之所以称为朴素,是因为它简单假设特征之间是相互独立的。实践中,朴素贝叶斯分类的效果通常都会很好,说明这个假设得到了一定程度的保证。近来,人们发现这个假设之所以有意义,理论上是有依据的。不过,由于机器学习领域发展迅猛,现在已经发明了多种效果更佳的算法。

下面,我们将利用停用词或标点符号对单词进行分类。这里,将字长作为一个特征,因为停用词和标点符号往往都比较短。

为此,需要定义如下所示的函数:

def word_features(word):
  return {'len': len(word)}

def isStopword(word):
  return word in sw or word in punctuation

下面,对取自古登堡项目的shakespeare-caesar.txt中的单词进行标注,以区分是否为停用词,具体代码如下所示:

labeled_words = ([(word.lower(), isStopword(word.lower())) for 
word in words])
random.seed(42)
random.shuffle(labeled_words)
print labeled_words[:5]

下面显示了5个标注后的单词:

[('was', True), ('greeke', False), ('cause', False), ('but', True),  ('house', False)] 

对于每个单词,我们可以求出其长度:

featuresets = [(word_features(n), word) for (n, word) in 
labeled_words]

前几章介绍过拟合,以及通过训练数据集和测试数据集的交叉验证来避免这种情况的方法。下面将要训练一个朴素贝叶斯分类器,其中90%的单词用于训练,剩下的10%用于测试。首先,创建训练数据集和测试数据集,并针对数据展开训练,具体代码如下所示:

cutoff = int(.9 * len(featuresets))
train_set, test_set = featuresets[:cutoff], featuresets[cutoff:]
classifier = nltk.NaiveBayesClassifier.train(train_set)

如今,拿出一些单词,检查该分类器的效果。

classifier = nltk.NaiveBayesClassifier.train(train_set)
print "'behold' class", 
classifier.classify(word_features('behold'))
print "'the' class", classifier.classify(word_features('the'))

幸运的是,这些单词的分类完全正确:

'behold' class False 'the' class True 

然后,根据测试数据集来计算分类器的准确性,具体代码如下所示:

print "Accuracy", nltk.classify.accuracy(classifier, test_set)

这个分类器的准确度非常高,几乎达到85%。下面来看哪些特征的贡献最大:

print classifier.show_most_informative_features(5)

结果显示,在分类过程中字长的作用最大:


下列代码取自本书代码包中的naive_classification.py文件:

import nltk
import string
import random

sw = set(nltk.corpus.stopwords.words('english'))
punctuation = set(string.punctuation)

def word_features(word):
  return {'len': len(word)}

def isStopword(word):
  return word in sw or word in punctuation

gb = nltk.corpus.gutenberg
words = gb.words("shakespeare-caesar.txt")

labeled_words = ([(word.lower(), isStopword(word.lower())) for 
word in words])
random.seed(42)
random.shuffle(labeled_words)
print labeled_words[:5]

featuresets = [(word_features(n), word) for (n, word) in 
labeled_words]
cutoff = int(.9 * len(featuresets))
train_set, test_set = featuresets[:cutoff], featuresets[cutoff:]
classifier = nltk.NaiveBayesClassifier.train(train_set)
print "'behold' class", 
classifier.classify(word_features('behold'))
print "'the' class", classifier.classify(word_features('the'))

print "Accuracy", nltk.classify.accuracy(classifier, test_set)
print classifier.show_most_informative_features(5)

以上内容选自《Python数据分析》

Python作为一种高级程序设计语言,其数据分析功能也逐渐为大众所认可。本书就是一本介绍如何用Python进行数据分析的指南。全书共12章,从Python程序库入门、NumPy数组、matplotlib和pandas开始,陆续介绍了数据加工、数据处理和数据可视化等内容,还包括信号处理、数据库、文本分析、机器学习、互操作性和性能优化等高级主题。本书补充了一些重要概念、常用函数及在线资源等重要内容。


相关推荐

redis的八种使用场景

前言:redis是我们工作开发中,经常要打交道的,下面对redis的使用场景做总结介绍也是对redis举报的功能做梳理。缓存Redis最常见的用途是作为缓存,用于加速应用程序的响应速度。...

基于Redis的3种分布式ID生成策略

在分布式系统设计中,全局唯一ID是一个基础而关键的组件。随着业务规模扩大和系统架构向微服务演进,传统的单机自增ID已无法满足需求。高并发、高可用的分布式ID生成方案成为构建可靠分布式系统的必要条件。R...

基于OpenWrt系统路由器的模式切换与网页设计

摘要:目前商用WiFi路由器已应用到多个领域,商家通过给用户提供一个稳定免费WiFi热点达到吸引客户、提升服务的目标。传统路由器自带的Luci界面提供了工厂模式的Web界面,用户可通过该界面配置路...

这篇文章教你看明白 nginx-ingress 控制器

主机nginx一般nginx做主机反向代理(网关)有以下配置...

如何用redis实现注册中心

一句话总结使用Redis实现注册中心:服务注册...

爱可可老师24小时热门分享(2020.5.10)

No1.看自己以前写的代码是种什么体验?No2.DooM-chip!国外网友SylvainLefebvre自制的无CPU、无操作码、无指令计数器...No3.我认为CS学位可以更好,如...

Apportable:拯救程序员,IOS一秒变安卓

摘要:还在为了跨平台使用cocos2d-x吗,拯救objc程序员的奇葩来了,ApportableSDK:FreeAndroidsupportforcocos2d-iPhone。App...

JAVA实现超买超卖方案汇总,那个最适合你,一篇文章彻底讲透

以下是几种Java实现超买超卖问题的核心解决方案及代码示例,针对高并发场景下的库存扣减问题:方案一:Redis原子操作+Lua脚本(推荐)//使用Redis+Lua保证原子性publicbo...

3月26日更新 快速施法自动施法可独立设置

2016年3月26日DOTA2有一个79.6MB的更新主要是针对自动施法和快速施法的调整本来内容不多不少朋友都有自动施法和快速施法的困扰英文更新日志一些视觉BUG修复就不翻译了主要翻译自动施...

Redis 是如何提供服务的

在刚刚接触Redis的时候,最想要知道的是一个’setnameJhon’命令到达Redis服务器的时候,它是如何返回’OK’的?里面命令处理的流程如何,具体细节怎么样?你一定有问过自己...

lua _G、_VERSION使用

到这里我们已经把lua基础库中的函数介绍完了,除了函数外基础库中还有两个常量,一个是_G,另一个是_VERSION。_G是基础库本身,指向自己,这个变量很有意思,可以无限引用自己,最后得到的还是自己,...

China's top diplomat to chair third China-Pacific Island countries foreign ministers' meeting

BEIJING,May21(Xinhua)--ChineseForeignMinisterWangYi,alsoamemberofthePoliticalBureau...

移动工作交流工具Lua推出Insights数据分析产品

Lua是一个适用于各种职业人士的移动交流平台,它在今天推出了一项叫做Insights的全新功能。Insights是一个数据平台,客户可以在上面实时看到员工之间的交流情况,并分析这些情况对公司发展的影响...

Redis 7新武器:用Redis Stack实现向量搜索的极限压测

当传统关系型数据库还在为向量相似度搜索的性能挣扎时,Redis7的RedisStack...

Nginx/OpenResty详解,Nginx Lua编程,重定向与内部子请求

重定向与内部子请求Nginx的rewrite指令不仅可以在Nginx内部的server、location之间进行跳转,还可以进行外部链接的重定向。通过ngx_lua模块的Lua函数除了能实现Nginx...