百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

基于Spark分布式并行处理技术,美林数据有效提升数据处理能力

wptr33 2025-02-18 13:40 20 浏览

由于Spark在使用JDBC方式读取关系型模型数据的时候,默认采用单线程任务执行。在数据量较大时,经常发现内存溢出、性能低的问题。在扩大内存读取后进行重分区,又会消耗时间,浪费资源。
因此,开发并发读取关系型模型数据,可以有效提高任务处理并发度,减少单个任务的数据处理量,进而提升处理效率。

分布式并发处理优化


(一)总体思路
关系型模型并发读取首先要选取分区字段,按照字段类型和分区个数确定并发分区间隔的key值。假设key值可以将模型数据均匀划分成多个逻辑分区,根据key值构成查询条件将模型数据进行并发读取。其中的关键点包括:
1、分区字段的选取规则
(a)初步确定模型中第一个字符或者数值型字段。
2、分区个数
(a)给出默认分区个数,测试读写后按照1000w数据量给出建议的资源配比和默认分区个数。
(b)允许用户进行自定义配置。
3、静态分区策略
(a)数值型:转换成字符并逆序,按照数值位取值的字符范围和分区个数确定并发分区间隔的key值,进行多分区构造。
(b)字符型:逆序后按照单字符取值范围和分区个数确定并发分区间隔的key值,进行多分区构造。
(二)总体处理流程
总体处理流程如图所示:

分区个数合法校验及处理规则:分区个数合法校验及处理规则为分区个数必须在[1,range]范围内,超出下限按照一个分区处理,超出上限按照上限range处理。支持的最大分区个数(range)字符型为64的4次方,数值型为10000。
(三)阈值范围并发读取
阈值范围并发读取适合分区字段为数值类型的模型。
关键参数:
partitionColumn:分区字段名称
lowerBound:取值下限
upperBound:取值上限
numPartitions:分区个数
(四)默认并发读取
默认并发读取适应于字符和数值类型的分区字段,按照类型的取值范围获取近似均分的过滤条件,将数据按照条件分配到不同的逻辑分区中,并以并发执行来提升数据读取效率。
1、模型并发读取
模型并发读取设计按照分区个数不同采用不同的接口调用方式。
?分区个数为1

val url = "jdbc:mysql://host:3306/test"
val prop = new java.util.Properties
prop.setProperty("user", "***")
prop.setProperty("password", "***")
prop.setProperty("driver", "com.mysql.jdbc.Driver")
val df = spark.sqlContext.read.jdbc(url,"tname",prop)

url为数据库连接串信息。
tname为查询的表名,也支持查询条件,形如:

(select * from ronghe_mysql_bigint_50wwhere cast(RY_YGGH as UNSIGNED) > 250000)tmp

prop为数据库连接信息、用户名、密码、driver等配置信息。
?分区个数大于1

val url = "jdbc:mysql://host:3306/test"
val prop = new java.util.Properties
prop.setProperty("user", "***")
prop.setProperty("password", "***")
prop.setProperty("driver", "com.mysql.jdbc.Driver")
val df = spark.sqlContext.read.jdbc(url,"tname",predicates,prop)

多分区并发读取比分区个数为1的参数增加了分区预划分条件。
其中,predicates为分区预划分条件,Array[String],读取时按照每个元素内容过滤数据。
2、分区预划分条件
分区预划分条件是由多个条件构成的字符串数据。

val predicates = Array[String](
" cols < '3'",
" cols >= '3' and cols <'6'",
" cols >= '6'
)

分区预划分条件包括分区条件列和比对值。分区条件值由选取的分区字段及其操作构成,比对值即为静态分区间隔值。考虑到有序数值型、字符型在业务场景中使用一般高位相似低位差异明显,因此对分区字段进行逆序处理。
假设分区字段为splitCol。
splitCol为数值类型时:分区条件列cols 为reverse(cast(splitColas char))。
splitCol为字符类型时:分区条件列cols 为reverse(splitCol)。
假设分区间隔值为splitKeys(Array[String]),长度为L。对比值按照左闭右开的方式构造。
第一个条件为cols < splitKeys(0);
第二个条件为cols >= splitKeys(0) and cols < splitKeys(1);
第i个条件为cols >= splitKeys(i-2)and cols < splitKeys(i-1);
最后一个条件为cols >= splitKeys(L-1)。
3、分区个数
模型并发读取设计,按照四位字符来表示分区间隔值。那么,可表示的值范围即为每位可取的值个数的四次方。
设定字符每位可取64个,数字可取的值个数10,即支持的最大分区个数(range):字符型(64的4次方)、数值型(10000)。
4、静态分区间隔值获取
实现思路
按照字段类型的字符范围找到分区间隔值,即找到间隔值所表示范围的近似均分位置点。
假定分区间隔值使用四位字符表示。(设N个分区)
数字类型字符间隔值寻找思路:
(1)数字取值[0,9](暂不考虑小数点,按位将被分到小于0对应的分区),表示范围:1, 2, 3,……,9998,9999。
(2)找到每个分片的大小范围S,表示范围个数除以分区个数(10^4/(N-1))。
(3)S-1,2S-1,3S-1,……,(N-1)*S-1即为可以将四位数均分的间隔值。
字符类型间隔值寻找思路(取值范围64个字符,优化算法):

(1)按照常用程度,将间隔值每位字符取值范围确定为:Array('.', '0', '1', '2', '3','4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J','K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z','a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p','q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '~')
(2)不常用字符将被归到最临近的一个分区,中文字符将被归到最后一个分区,避免不常用字符的独占一个分区情况,以减少对资源的消耗。
(3)找到每个分段的大小范围S,表示范围个数除以分区个数(64^4/(N-1))
(4)同数字字符间隔值,将字符间隔值理解成64进制的数字(可以采用移位运算快速获取),那么S-1,2S-1,3S-1,……,(N-1)*S-1就是将四位字符近似均分的数字,每位对应的字符间隔值数组中的字符构成的字符串即为间隔值。

十进制转为64进制,以十进制数keyInt为例,tmp为转换后结果数组:digitsNum为表示位数4。

for (j <- 1 to digitsNum) {
tmp(digitsNum - j) = charactors(keyInt & (charLength - 1))
keyInt >>= 6
}

字符类型间隔值寻找思路(取值范围任意个字符,通用算法):
与字符类型字符间隔值总体寻找思路一致,但不受取值范围个数的限制。
(1)按照常用程度,将间隔值每位字符取值范围确定为Array(……),元素个数为m。
(2)不常用字符将被归到最临近的一个分区,中文字符将被归到最后一个分区,避免不常用字符的独占一个分区情况,以减少对资源的消耗。
(3)找到每个分段的大小范围S,表示范围个数除以分区个数(m^4/(N-1))。
(4)同数字字符间隔值,将字符间隔值理解成m进制的数字,那么S-1,2S-1,3S-1,……,(N-1)*S-1就是将四位字符近似均分的数字,这些数字对应的字符串即为均分字符范围的间隔值(数字每一位对应的字符间隔值数组中的字符构成的字符串即为间隔值)。
十进制转为m进制,以十进制数keyInt为例,tmp为转换后结果数组:digitsNum为表示位数4。

for (j <- 1 to digitsNum) {
tmp(digitsNum - j) = charactors(keyInt % m)
keyInt = math.floor(keyInt / m).toInt
}


测试结果

在数据资产平台中,以50万、1000万的数据进行同步性能测试,测试结果如下表:


总结与展望

按照分区字段并发读取数据进行处理能够有效提升数据的处理能力,但受分区字段取值范围、数据分布情况的影响,效果不尽相同,后续将对分区策略进行持续优化,以达到适应各种业务场景的性能要求。

相关推荐

redis的八种使用场景

前言:redis是我们工作开发中,经常要打交道的,下面对redis的使用场景做总结介绍也是对redis举报的功能做梳理。缓存Redis最常见的用途是作为缓存,用于加速应用程序的响应速度。...

基于Redis的3种分布式ID生成策略

在分布式系统设计中,全局唯一ID是一个基础而关键的组件。随着业务规模扩大和系统架构向微服务演进,传统的单机自增ID已无法满足需求。高并发、高可用的分布式ID生成方案成为构建可靠分布式系统的必要条件。R...

基于OpenWrt系统路由器的模式切换与网页设计

摘要:目前商用WiFi路由器已应用到多个领域,商家通过给用户提供一个稳定免费WiFi热点达到吸引客户、提升服务的目标。传统路由器自带的Luci界面提供了工厂模式的Web界面,用户可通过该界面配置路...

这篇文章教你看明白 nginx-ingress 控制器

主机nginx一般nginx做主机反向代理(网关)有以下配置...

如何用redis实现注册中心

一句话总结使用Redis实现注册中心:服务注册...

爱可可老师24小时热门分享(2020.5.10)

No1.看自己以前写的代码是种什么体验?No2.DooM-chip!国外网友SylvainLefebvre自制的无CPU、无操作码、无指令计数器...No3.我认为CS学位可以更好,如...

Apportable:拯救程序员,IOS一秒变安卓

摘要:还在为了跨平台使用cocos2d-x吗,拯救objc程序员的奇葩来了,ApportableSDK:FreeAndroidsupportforcocos2d-iPhone。App...

JAVA实现超买超卖方案汇总,那个最适合你,一篇文章彻底讲透

以下是几种Java实现超买超卖问题的核心解决方案及代码示例,针对高并发场景下的库存扣减问题:方案一:Redis原子操作+Lua脚本(推荐)//使用Redis+Lua保证原子性publicbo...

3月26日更新 快速施法自动施法可独立设置

2016年3月26日DOTA2有一个79.6MB的更新主要是针对自动施法和快速施法的调整本来内容不多不少朋友都有自动施法和快速施法的困扰英文更新日志一些视觉BUG修复就不翻译了主要翻译自动施...

Redis 是如何提供服务的

在刚刚接触Redis的时候,最想要知道的是一个’setnameJhon’命令到达Redis服务器的时候,它是如何返回’OK’的?里面命令处理的流程如何,具体细节怎么样?你一定有问过自己...

lua _G、_VERSION使用

到这里我们已经把lua基础库中的函数介绍完了,除了函数外基础库中还有两个常量,一个是_G,另一个是_VERSION。_G是基础库本身,指向自己,这个变量很有意思,可以无限引用自己,最后得到的还是自己,...

China&#39;s top diplomat to chair third China-Pacific Island countries foreign ministers&#39; meeting

BEIJING,May21(Xinhua)--ChineseForeignMinisterWangYi,alsoamemberofthePoliticalBureau...

移动工作交流工具Lua推出Insights数据分析产品

Lua是一个适用于各种职业人士的移动交流平台,它在今天推出了一项叫做Insights的全新功能。Insights是一个数据平台,客户可以在上面实时看到员工之间的交流情况,并分析这些情况对公司发展的影响...

Redis 7新武器:用Redis Stack实现向量搜索的极限压测

当传统关系型数据库还在为向量相似度搜索的性能挣扎时,Redis7的RedisStack...

Nginx/OpenResty详解,Nginx Lua编程,重定向与内部子请求

重定向与内部子请求Nginx的rewrite指令不仅可以在Nginx内部的server、location之间进行跳转,还可以进行外部链接的重定向。通过ngx_lua模块的Lua函数除了能实现Nginx...