百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

一文说透Redis ZSet(一文说透地下钱庄到底是个啥)

wptr33 2025-01-31 15:38 31 浏览

单讲概念会有些枯燥,我们还是从实际场景出发,进行逐层分析深挖。

有个这样的业务场景,京东家电需要根据各品牌的当日累计销售额,来实时构建“销售额排行榜”。

如下图所示:

从技术实现的角度,最简单、且实时性高的方式,当然是一条SQL搞定一切,根据品牌进行分组,然后按照销售额进行降序排序就好了。

SQL如下:

SELECT
	brand_id ,
	sum(amount) AS total_amount
FROM
	ea_order
WHERE
	`status` = 1
AND create_time > '2023-12-06'          //当天
GROUP BY
	brand_id
ORDER BY
	total_amount DESC;


但有一点,这种大电商平台一旦搞促销的话,家电品类的单日订单量达到几百万是很轻松的。这种情况下,不但SQL执行时间很长,并且对数据库资源的消耗也很大。

另外就是,如果产品经理加了新需求,还要要统计当月订单量的排行榜,那就直接GG了。

因此,我们需要寻求新的解决方案,该方案需要同时满足高实时性、高性能、海量数据三个要求,缺一不可。这时候,就混到Redis ZSet粉墨登场了。

何为Set?

Set是一个无序的天然去重的集合,即:Key-Set。此外还提供了交集、并集等一系列直接操作集合的方法,对于求共同好友(粉丝)、共同爱好之类的业务场景,实现特别方便。

如下图所示:

对应操作如下:

//好友关注场景

redis> SADD Tony Mary    //Mary关注了Tony
(integer) 1
redis> SADD Tony Lynn    //Lynn关注了Tony
(integer) 1
redis> SMEMBERS Tony     //Tony的粉丝列表
1) "Mary"
2) "Lynn"
redis> SADD Tom Mary     //Mary关注了Tom
(integer) 1
redis> SADD Tom Eric     //Eric关注了Tom
(integer) 1
redis> SMEMBERS Tom      //Tom的粉丝列表
1) "Mary"
2) "Eric"
redis> SINTER Tony Tom   //Tony和Tom的共同粉丝
1) "Mary"
redis> SUNION Tony Tom   //Tony和Tom两个人的所有粉丝
1) "Mary"
2) "Lynn"
3) "Eric"
redis> SDIFF Tony Tom   //关注了Tony,但没有关注Tom的人
1) "Lynn"
redis> SDIFF Tom Tony   //关注了Tom,但没有关注Tony的人
1) "Eric"


说下Set和List数据结构的区别:

  • List中可以存储重复元素,而Set中只能存储非重复元素。
  • List中存储的元素是有先后顺序的,而Set中存储的元素则是无序的。

何为ZSet?

Zset(SortedSet),是Set的可排序版,是通过增加一个排序属性score来实现的,适用于排行榜和时间线之类的业务场景。

如下图所示,这里的score属性对应的是销售额:

对应操作如下:

//销量排行榜场景

redis> ZADD 家电全品类 5.5 海尔       //添加了海尔电器和5.5亿销售额
(integer) 1
redis> ZADD 家电全品类 4.5 美的       //添加了美的电器和4.5亿销售额
(integer) 1
redis> ZADD 家电全品类 3.2 小米       //添加了小米电器和3.2亿销售额
(integer) 1
redis> ZADD 家电全品类 2.7 格力       //添加了格力电器和2.7亿销售额
(integer) 1
redis> ZCARD 家电全品类              //家电全品类的数量
(integer) 4
redis> ZSCORE 家电全品类 格力        //获取格力的销售额
"2.7"
redis> ZREVRANGE 家电全品类 0 -1 WITHSCORES    //家电全品类的倒序输出
1) "海尔"
2) "5.5"
3) "美的"
4) "4.5"
5) "小米"
6) "3.2"
7) "格力"
8) "2.7"
redis> ZRANGE 家电全品类 0 -1 WITHSCORES      //家电全品类的正序输出
1) "格力"
2) "2.7"
3) "小米"
4) "3.2"
5) "美的"
6) "4.5"
7) "海尔"
8) "5.5"
redis> ZINCRBY 家电全品类 2.2 格力            //为格力增加2.2亿销售额
"4.9"
redis> ZREVRANGE 家电全品类 0 -1 WITHSCORES   //增加销售额后的排行榜变化
1) "海尔"
2) "5.5"
3) "格力"
4) "4.9"
5) "美的"
6) "4.5"
7) "小米"
8) "3.2"


ZSet具备非常好的性能和并发度,以下为Redis性能白皮书上的指标:

虽然上面只有ZADD的测试数据,但ZINCRBY和ZREVRANGE(限制读取范围)也不会差,肯定都是同一个数据量级的。

注意点:在Redis Cluster模式下,需要对ZREVRANGE的读取范围进行限制,避免大热Key的出现。

Redis ZSet在排行榜场景中,具备高性能的原因有二:

  • 用空间换时间的思想。
  • 优秀的底层实现。

ZSet底层实现

我们以Redis 7 为例,ZSet的底层实现还是比较复杂的,用了三种数据结构来进行实现,分别是skiplist(跳表)、dict(哈希表)和listpack实现的。

其具体判断规则如下:

当ZSet元素个数小于128(zset_max_listpack_entries的默认值),并且元素值小于64字节(zset_max_listpack_value的默认值)的时候,使用listpack作为底层结构,以节省空间,否则使用skiplist + dict作为底层结构,以提升效率。

下面我们就来分别介绍一下。

listpack

listpack可以看做是ziplist的优化版本,ziplist的整体结构如下:

ziplist包含如下字段:

  • zlbytes, 4个字节,记录ziplist所占的空间。
  • zltail, 4个字节,记录ziplist尾部的偏移量。
  • zllen, 2个字节,记录ziplist中存储的entry数量。
  • entry,ziplist中的具体数据项,不定长。
  • zlend, 1个字节,用来标记ziplist的结束点,固定值为255。
    其中,entry又包括三个字段:
  • prevlen, 记录前一个entry的长度,便于从后往前遍历。如果prelen的值小于254,用1个字节来保存,大于等于254,则用5个字节。
  • encoding,1、2或5个字节,记录当前节点的类型(字符串或整数)和长度。
  • data,实际存储的数据,不定长。

优点

  • 数据结构紧凑,内存空间连续,节省内存开销且可以利用CPU缓存。

缺点

  • 若保存元素过多,会导致查询效率降低,适用于少量元素,且元素占用空间不大的场景。
  • 可能会引发级联更新问题。

**级联更新问题:
**
如上文所说,entry中的prelen值,如果小于254,用1个字节来保存,大于等于254,则用5个字节。

如果ziplist更新entry1,恰好entry1从小于254字节,变成了大于等于254字节,那么entry2节点的prelen属性,就会从1个字节变成5个字节。

恰好entry2由于上述原因,也从小于254字节,变成了大于等于254字节,那么entry3节点的prelen属性,就会从1个字节变成5个字节,以此类推。

而listpack的出现,正是为了解决级联更新的问题,listpack的整体结构如下:

我们可以看下,listpack和ziplist的整体结构大同小异,也是通过total_bytes字段记录listpack所占的空间,size字段记录entry数量,最后也有个结束点标记,只是少了ztail_offset字段。

而entry中,多了length字段,来记录encoding + content的总长度,重点是少了prevlen字段,从而避免了ziplist中的级联更新问题。

skiplist + dict

ZSet数据量比较少的场景,它的增删改和多维度查询操作,无论怎么处理都不会慢。一旦数据量庞大起来,那就完全不一样了,ZSet是通过skiplist + dict的方式来实现的。

为什么同时选择skiplist + dict?

这是基于提升性能考虑的,这也是Redis设计的精妙之处。
只使用skiplist:根据成员查找分值操作(ZSCORE)的复杂度从 O(1) 上升为 O(logN)。
只使用dict:在执行范围查询操作(ZREVRANGE、ZRANGE)的时候,字典需要进行排序,至少需要O(NlogN) 的时间复杂度和 O(N) 的内存空间。

skiplist + dict各存一份完整数据?

不是这样的,skiplist Node中的 *obj 和 dict 中的 *key 会指向同一个具体 member(元素)的地址,这样可以节省内存。

结语

这期先讲这么多吧,很多更加深入的细节,我们留到以后再讲。


作者:托尼学长
链接:
https://juejin.cn/post/7316097536547684391



相关推荐

oracle数据导入导出_oracle数据导入导出工具

关于oracle的数据导入导出,这个功能的使用场景,一般是换服务环境,把原先的oracle数据导入到另外一台oracle数据库,或者导出备份使用。只不过oracle的导入导出命令不好记忆,稍稍有点复杂...

继续学习Python中的while true/break语句

上次讲到if语句的用法,大家在微信公众号问了小编很多问题,那么小编在这几种解决一下,1.else和elif是子模块,不能单独使用2.一个if语句中可以包括很多个elif语句,但结尾只能有一个...

python continue和break的区别_python中break语句和continue语句的区别

python中循环语句经常会使用continue和break,那么这2者的区别是?continue是跳出本次循环,进行下一次循环;break是跳出整个循环;例如:...

简单学Python——关键字6——break和continue

Python退出循环,有break语句和continue语句两种实现方式。break语句和continue语句的区别:break语句作用是终止循环。continue语句作用是跳出本轮循环,继续下一次循...

2-1,0基础学Python之 break退出循环、 continue继续循环 多重循

用for循环或者while循环时,如果要在循环体内直接退出循环,可以使用break语句。比如计算1至100的整数和,我们用while来实现:sum=0x=1whileTrue...

Python 中 break 和 continue 傻傻分不清

大家好啊,我是大田。...

python中的流程控制语句:continue、break 和 return使用方法

Python中,continue、break和return是控制流程的关键语句,用于在循环或函数中提前退出或跳过某些操作。它们的用途和区别如下:1.continue(跳过当前循环的剩余部分,进...

L017:continue和break - 教程文案

continue和break在Python中,continue和break是用于控制循环(如for和while)执行流程的关键字,它们的作用如下:1.continue:跳过当前迭代,...

作为前端开发者,你都经历过怎样的面试?

已经裸辞1个月了,最近开始投简历找工作,遇到各种各样的面试,今天分享一下。其实在职的时候也做过面试官,面试官时,感觉自己问的问题很难区分候选人的能力,最好的办法就是看看候选人的github上的代码仓库...

面试被问 const 是否不可变?这样回答才显功底

作为前端开发者,我在学习ES6特性时,总被const的"善变"搞得一头雾水——为什么用const声明的数组还能push元素?为什么基本类型赋值就会报错?直到翻遍MDN文档、对着内存图反...

2023金九银十必看前端面试题!2w字精品!

导文2023金九银十必看前端面试题!金九银十黄金期来了想要跳槽的小伙伴快来看啊CSS1.请解释CSS的盒模型是什么,并描述其组成部分。...

前端面试总结_前端面试题整理

记得当时大二的时候,看到实验室的学长学姐忙于各种春招,有些收获了大厂offer,有些还在苦苦面试,其实那时候的心里还蛮忐忑的,不知道自己大三的时候会是什么样的一个水平,所以从19年的寒假放完,大二下学...

由浅入深,66条JavaScript面试知识点(七)

作者:JakeZhang转发链接:https://juejin.im/post/5ef8377f6fb9a07e693a6061目录...

2024前端面试真题之—VUE篇_前端面试题vue2020及答案

添加图片注释,不超过140字(可选)...

今年最常见的前端面试题,你会做几道?

在面试或招聘前端开发人员时,期望、现实和需求之间总是存在着巨大差距。面试其实是一个交流想法的地方,挑战人们的思考方式,并客观地分析给定的问题。可以通过面试了解人们如何做出决策,了解一个人对技术和解决问...