百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT技术 > 正文

一文说透Redis ZSet(一文说透地下钱庄到底是个啥)

wptr33 2025-01-31 15:38 19 浏览

单讲概念会有些枯燥,我们还是从实际场景出发,进行逐层分析深挖。

有个这样的业务场景,京东家电需要根据各品牌的当日累计销售额,来实时构建“销售额排行榜”。

如下图所示:

从技术实现的角度,最简单、且实时性高的方式,当然是一条SQL搞定一切,根据品牌进行分组,然后按照销售额进行降序排序就好了。

SQL如下:

SELECT
	brand_id ,
	sum(amount) AS total_amount
FROM
	ea_order
WHERE
	`status` = 1
AND create_time > '2023-12-06'          //当天
GROUP BY
	brand_id
ORDER BY
	total_amount DESC;


但有一点,这种大电商平台一旦搞促销的话,家电品类的单日订单量达到几百万是很轻松的。这种情况下,不但SQL执行时间很长,并且对数据库资源的消耗也很大。

另外就是,如果产品经理加了新需求,还要要统计当月订单量的排行榜,那就直接GG了。

因此,我们需要寻求新的解决方案,该方案需要同时满足高实时性、高性能、海量数据三个要求,缺一不可。这时候,就混到Redis ZSet粉墨登场了。

何为Set?

Set是一个无序的天然去重的集合,即:Key-Set。此外还提供了交集、并集等一系列直接操作集合的方法,对于求共同好友(粉丝)、共同爱好之类的业务场景,实现特别方便。

如下图所示:

对应操作如下:

//好友关注场景

redis> SADD Tony Mary    //Mary关注了Tony
(integer) 1
redis> SADD Tony Lynn    //Lynn关注了Tony
(integer) 1
redis> SMEMBERS Tony     //Tony的粉丝列表
1) "Mary"
2) "Lynn"
redis> SADD Tom Mary     //Mary关注了Tom
(integer) 1
redis> SADD Tom Eric     //Eric关注了Tom
(integer) 1
redis> SMEMBERS Tom      //Tom的粉丝列表
1) "Mary"
2) "Eric"
redis> SINTER Tony Tom   //Tony和Tom的共同粉丝
1) "Mary"
redis> SUNION Tony Tom   //Tony和Tom两个人的所有粉丝
1) "Mary"
2) "Lynn"
3) "Eric"
redis> SDIFF Tony Tom   //关注了Tony,但没有关注Tom的人
1) "Lynn"
redis> SDIFF Tom Tony   //关注了Tom,但没有关注Tony的人
1) "Eric"


说下Set和List数据结构的区别:

  • List中可以存储重复元素,而Set中只能存储非重复元素。
  • List中存储的元素是有先后顺序的,而Set中存储的元素则是无序的。

何为ZSet?

Zset(SortedSet),是Set的可排序版,是通过增加一个排序属性score来实现的,适用于排行榜和时间线之类的业务场景。

如下图所示,这里的score属性对应的是销售额:

对应操作如下:

//销量排行榜场景

redis> ZADD 家电全品类 5.5 海尔       //添加了海尔电器和5.5亿销售额
(integer) 1
redis> ZADD 家电全品类 4.5 美的       //添加了美的电器和4.5亿销售额
(integer) 1
redis> ZADD 家电全品类 3.2 小米       //添加了小米电器和3.2亿销售额
(integer) 1
redis> ZADD 家电全品类 2.7 格力       //添加了格力电器和2.7亿销售额
(integer) 1
redis> ZCARD 家电全品类              //家电全品类的数量
(integer) 4
redis> ZSCORE 家电全品类 格力        //获取格力的销售额
"2.7"
redis> ZREVRANGE 家电全品类 0 -1 WITHSCORES    //家电全品类的倒序输出
1) "海尔"
2) "5.5"
3) "美的"
4) "4.5"
5) "小米"
6) "3.2"
7) "格力"
8) "2.7"
redis> ZRANGE 家电全品类 0 -1 WITHSCORES      //家电全品类的正序输出
1) "格力"
2) "2.7"
3) "小米"
4) "3.2"
5) "美的"
6) "4.5"
7) "海尔"
8) "5.5"
redis> ZINCRBY 家电全品类 2.2 格力            //为格力增加2.2亿销售额
"4.9"
redis> ZREVRANGE 家电全品类 0 -1 WITHSCORES   //增加销售额后的排行榜变化
1) "海尔"
2) "5.5"
3) "格力"
4) "4.9"
5) "美的"
6) "4.5"
7) "小米"
8) "3.2"


ZSet具备非常好的性能和并发度,以下为Redis性能白皮书上的指标:

虽然上面只有ZADD的测试数据,但ZINCRBY和ZREVRANGE(限制读取范围)也不会差,肯定都是同一个数据量级的。

注意点:在Redis Cluster模式下,需要对ZREVRANGE的读取范围进行限制,避免大热Key的出现。

Redis ZSet在排行榜场景中,具备高性能的原因有二:

  • 用空间换时间的思想。
  • 优秀的底层实现。

ZSet底层实现

我们以Redis 7 为例,ZSet的底层实现还是比较复杂的,用了三种数据结构来进行实现,分别是skiplist(跳表)、dict(哈希表)和listpack实现的。

其具体判断规则如下:

当ZSet元素个数小于128(zset_max_listpack_entries的默认值),并且元素值小于64字节(zset_max_listpack_value的默认值)的时候,使用listpack作为底层结构,以节省空间,否则使用skiplist + dict作为底层结构,以提升效率。

下面我们就来分别介绍一下。

listpack

listpack可以看做是ziplist的优化版本,ziplist的整体结构如下:

ziplist包含如下字段:

  • zlbytes, 4个字节,记录ziplist所占的空间。
  • zltail, 4个字节,记录ziplist尾部的偏移量。
  • zllen, 2个字节,记录ziplist中存储的entry数量。
  • entry,ziplist中的具体数据项,不定长。
  • zlend, 1个字节,用来标记ziplist的结束点,固定值为255。
    其中,entry又包括三个字段:
  • prevlen, 记录前一个entry的长度,便于从后往前遍历。如果prelen的值小于254,用1个字节来保存,大于等于254,则用5个字节。
  • encoding,1、2或5个字节,记录当前节点的类型(字符串或整数)和长度。
  • data,实际存储的数据,不定长。

优点

  • 数据结构紧凑,内存空间连续,节省内存开销且可以利用CPU缓存。

缺点

  • 若保存元素过多,会导致查询效率降低,适用于少量元素,且元素占用空间不大的场景。
  • 可能会引发级联更新问题。

**级联更新问题:
**
如上文所说,entry中的prelen值,如果小于254,用1个字节来保存,大于等于254,则用5个字节。

如果ziplist更新entry1,恰好entry1从小于254字节,变成了大于等于254字节,那么entry2节点的prelen属性,就会从1个字节变成5个字节。

恰好entry2由于上述原因,也从小于254字节,变成了大于等于254字节,那么entry3节点的prelen属性,就会从1个字节变成5个字节,以此类推。

而listpack的出现,正是为了解决级联更新的问题,listpack的整体结构如下:

我们可以看下,listpack和ziplist的整体结构大同小异,也是通过total_bytes字段记录listpack所占的空间,size字段记录entry数量,最后也有个结束点标记,只是少了ztail_offset字段。

而entry中,多了length字段,来记录encoding + content的总长度,重点是少了prevlen字段,从而避免了ziplist中的级联更新问题。

skiplist + dict

ZSet数据量比较少的场景,它的增删改和多维度查询操作,无论怎么处理都不会慢。一旦数据量庞大起来,那就完全不一样了,ZSet是通过skiplist + dict的方式来实现的。

为什么同时选择skiplist + dict?

这是基于提升性能考虑的,这也是Redis设计的精妙之处。
只使用skiplist:根据成员查找分值操作(ZSCORE)的复杂度从 O(1) 上升为 O(logN)。
只使用dict:在执行范围查询操作(ZREVRANGE、ZRANGE)的时候,字典需要进行排序,至少需要O(NlogN) 的时间复杂度和 O(N) 的内存空间。

skiplist + dict各存一份完整数据?

不是这样的,skiplist Node中的 *obj 和 dict 中的 *key 会指向同一个具体 member(元素)的地址,这样可以节省内存。

结语

这期先讲这么多吧,很多更加深入的细节,我们留到以后再讲。


作者:托尼学长
链接:
https://juejin.cn/post/7316097536547684391



相关推荐

Python自动化脚本应用与示例(python办公自动化脚本)

Python是编写自动化脚本的绝佳选择,因其语法简洁、库丰富且跨平台兼容性强。以下是Python自动化脚本的常见应用场景及示例,帮助你快速上手:一、常见自动化场景文件与目录操作...

Python文件操作常用库高级应用教程

本文是在前面《Python文件操作常用库使用教程》的基础上,进一步学习Python文件操作库的高级应用。一、高级文件系统监控1.1watchdog库-实时文件系统监控安装与基本使用:...

Python办公自动化系列篇之六:文件系统与操作系统任务

作为高效办公自动化领域的主流编程语言,Python凭借其优雅的语法结构、完善的技术生态及成熟的第三方工具库集合,已成为企业数字化转型过程中提升运营效率的理想选择。该语言在结构化数据处理、自动化文档生成...

14《Python 办公自动化教程》os 模块操作文件与文件夹

在日常工作中,我们经常会和文件、文件夹打交道,比如将服务器上指定目录下文件进行归档,或将爬虫爬取的数据根据时间创建对应的文件夹/文件,如果这些还依靠手动来进行操作,无疑是费时费力的,这时候Pyt...

python中os模块详解(python os.path模块)

os模块是Python标准库中的一个模块,它提供了与操作系统交互的方法。使用os模块可以方便地执行许多常见的系统任务,如文件和目录操作、进程管理、环境变量管理等。下面是os模块中一些常用的函数和方法:...

21-Python-文件操作(python文件的操作步骤)

在Python中,文件操作是非常重要的一部分,它允许我们读取、写入和修改文件。下面将详细讲解Python文件操作的各个方面,并给出相应的示例。1-打开文件...

轻松玩转Python文件操作:移动、删除

哈喽,大家好,我是木头左!Python文件操作基础在处理计算机文件时,经常需要执行如移动和删除等基本操作。Python提供了一些内置的库来帮助完成这些任务,其中最常用的就是os模块和shutil模块。...

Python 初学者练习:删除文件和文件夹

在本教程中,你将学习如何在Python中删除文件和文件夹。使用os.remove()函数删除文件...

引人遐想,用 Python 获取你想要的“某个人”摄像头照片

仅用来学习,希望给你们有提供到学习上的作用。1.安装库需要安装python3.5以上版本,在官网下载即可。然后安装库opencv-python,安装方式为打开终端输入命令行。...

Python如何使用临时文件和目录(python目录下文件)

在某些项目中,有时候会有大量的临时数据,比如各种日志,这时候我们要做数据分析,并把最后的结果储存起来,这些大量的临时数据如果常驻内存,将消耗大量内存资源,我们可以使用临时文件,存储这些临时数据。使用标...

Linux 下海量文件删除方法效率对比,最慢的竟然是 rm

Linux下海量文件删除方法效率对比,本次参赛选手一共6位,分别是:rm、find、findwithdelete、rsync、Python、Perl.首先建立50万个文件$testfor...

Python 开发工程师必会的 5 个系统命令操作库

当我们需要编写自动化脚本、部署工具、监控程序时,熟练操作系统命令几乎是必备技能。今天就来聊聊我在实际项目中高频使用的5个系统命令操作库,这些可都是能让你效率翻倍的"瑞士军刀"。一...

Python常用文件操作库使用详解(python文件操作选项)

Python生态系统提供了丰富的文件操作库,可以处理各种复杂的文件操作需求。本教程将介绍Python中最常用的文件操作库及其实际应用。一、标准库核心模块1.1os模块-操作系统接口主要功能...

11. 文件与IO操作(文件io和网络io)

本章深入探讨Go语言文件处理与IO操作的核心技术,结合高性能实践与安全规范,提供企业级解决方案。11.1文件读写11.1.1基础操作...

Python os模块的20个应用实例(python中 import os模块用法)

在Python中,...