实际应用中MySQL分库分表实践总结原理
wptr33 2024-12-29 06:24 16 浏览
实际应用中MySQL分库分表实践总结原理
互联网系统需要处理大量用户的请求。比如微信日活用户破10亿,海量的用户每天产生海量的数量;美团外卖,每天都是几千万的订单,那这些系统的用户表、订单表、交易流水表等是如何处理呢?
数据量只增不减,历史数据又必须要留存,非常容易成为性能的瓶颈,而要解决这样的数据库瓶颈问题,“读写分离”和缓存往往都不合适,目前比较普遍的方案就是使用NoSQL/NewSQL或者采用分库分表。
使用分库分表时,主要有垂直拆分和水平拆分两种拆分模式,都属于物理空间的拆分。
分库分表方案:只分库、只分表、分库又分表。
垂直拆分:由于表数量多导致的单个库大。将表拆分到多个库中。
水平拆分:由于表记录多导致的单个库大。将表记录拆分到多个表中。
一、传统项目结构
1.1数据库面临的性能瓶颈
① 数据库连接 数据库连接是非常稀少的资源,MySQL数据库默认100个连接,单机最大1500连接。如果一个库里既有用户相关的数据又有商品、订单相关的数据,当海量用户同时操作时,数据库连接就很可能成为瓶颈。
② 数据量 MySQL单库数据量在5000万以内性能比较好,超过阈值后性能会随着数据量的增大而变弱。MySQL单表的数据量是500w-1000w之间性能比较好,超过1000w性能也会下降。
③ 硬件问题 因为单个服务的磁盘空间是有限制的,如果并发压力下所有的请求都访问同一个节点,肯定会对磁盘IO造成非常大的影响。
1.2数据库优化方案
① 参数优化 ② 缓存、索引 ③ 读写分离 ④ 分库分表 (最终方案)
二、数据库拆分方式
1、垂直拆分
垂直拆分又称为纵向拆分,垂直拆分是将表按库进行分离,或者修改表结构按照访问的差异将某些列拆分出去。应用时有垂直分库和垂直分表两种方式,一般谈到的垂直拆分主要指的是垂直分库。
如下图所示,采用垂直分库,将用户表和订单表拆分到不同的数据库中。
垂直分表就是将一张表中不常用的字段拆分到另一张表中,从而保证第一张表中的字段较少,避免出现数据库跨页存储的问题,从而提升查询效率。
解决:一个表中字段过多,还有有些字段经常使用,有些字段不经常使用,或者还有text等字段信息。可以考虑使用垂直分表方案。
按列进行垂直拆分,即把一条记录分开多个地方保存,每个子表的行数相同。把主键和一些列放到一个表,然后把主键和另外的列放到另一个表中。
垂直拆分优点:
拆分后业务清晰,拆分规则明确;
易于数据的维护和扩展;
可以使得行数据变小,一个数据块 (Block) 就能存放更多的数据,在查询时就会减少 I/O 次数;
可以达到最大化利用 Cache 的目的,具体在垂直拆分的时候可以将不常变的字段放一起,将经常改变的放一起;
便于实现冷热分离的数据表设计模式。
垂直拆分缺点:
主键出现冗余,需要管理冗余列;
会引起表连接 JOIN 操作,可以通过在业务服务器上进行 join 来减少数 据库压力,提高了系统的复杂度;
依然存在单表数据量过大的问题;
事务处理复杂。
2、水平拆分
水平拆分又称为横向拆分。 相对于垂直拆分,它不再将数据根据业务逻辑分类,而是通过某个字段(或某几个字段),根据某种规则将数据分散至多个库或表中,每个表仅包含数据的一部分,如下图所示。
水平分表是将一张含有很多记录数的表水平切分,不同的记录可以分开保存,拆分成几张结构相同的表。如果一张表中的记录数过多,那么会对数据库的读写性能产生较大的影响,虽然此时仍然能够正确地读写,但读写的速度已经到了业务无法忍受的地步,此时就需要使用水平分表来解决这个问题。
水平拆分:解决表中记录过多问题。
垂直拆分:解决表过多或者是表字段过多问题。
水平拆分重点考虑拆分规则:例如范围、时间或Hash算法等。
水平拆分优点:
拆分规则设计好,join 操作基本可以数据库做;
不存在单库大数据,高并发的性能瓶颈;
切分的表的结构相同,应用层改造较少,只需要增加路由规则即可;
提高了系统的稳定性和负载能力。
水平拆分缺点:
拆分规则难以抽象;
跨库Join性能较差;
分片事务的一致性难以解决;
数据扩容的难度和维护量极大。
日常工作中,我们通常会同时使用两种拆分方式,垂直拆分更偏向于产品/业务/功能拆分的过程,在技术上我们更关注水平拆分的方案。
三、分库分表需要解决的问题
3.1分布式事务问题
解决方案: ① 采用补偿事务,例如TCC来解决分布式事务问题。 ② 用记录日志等方式来解决分布式事务问题。
3.2分布式主键ID冲突问题
解决方案: ① 利用Redis的incr命令生成主键。 ② 用UUID生成主键(不建议:字段比较长、不好排序)。 ③ 利用snowake算法生成主键。
3.3跨库join问题
解决方案: ① 将有E-R关系的表存储到一个库中。 ② 对于数据量少的表建成全局表,分布到各个库中 ③ 对于必须跨库join的,最多支持跨两张表的跨库join
四、SNOWFLAKE策略
有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成,SnowFlake解决了这种需求。SnowFlake是Twitter开源的分布式ID生成算法,结果是一个long型的ID,long型是8个字节,64-bit。其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号,最后还有一个符号位,永远是0。如下图所示:
SnowFlake生成的ID整体上按照时间自增排序,并且整个分布式系统内不会产生ID重复,并且效率较高。经测试SnowFlake每秒能够产生26万个ID。缺点是强依赖机器时钟,如果多台机器环境时钟没同步,或时钟回拨,会导致发号重复或者服务会处于不可用状态。因此一些互联网公司也基于上述的方案做了封装,例如百度的uidgenerator(基于SnowFlake)和美团的leaf(基于数据库和SnowFlake)等。
五、扩容方面
当系统用户进入了高速增长期时,即便是对数据进行分库分表,但数据库的容量,还有表的数据量也总会达到天花板。当现有数据库达到承受极限时,就需要增加新服务器节点数量进行横向扩容。
首先来思考一下,横向扩展会有什么技术难度?
数据迁移问题
分片规则改变
数据同步、时间点、数据一致性
遇到上述问题时,我们可以使用以下两种方案:
1、停机扩容
这是一种很多人初期都会使用的方案,尤其是初期只有几台数据库的时候。停机扩容的具体步骤如下:
站点发布一个公告,例如:“为了为广大用户提供更好的服务,本站点将在今晚00:00-2:00之间升级,给您带来不便抱歉";
时间到了,停止所有对外服务;
新增n个数据库,然后写一个数据迁移程序,将原有x个库的数据导入到最新的y个库中。比如分片规则由%x变为%y;
数据迁移完成,修改数据库服务配置,原来x个库的配置升级为y个库的配置
重启服务,连接新库重新对外提供服务
回滚方案:万一数据迁移失败,需要将配置和数据回滚,改天再挂公告。
优点:简单
缺点:
停止服务,缺乏高可用
程序员压力山大,需要在指定时间完成
如果有问题没有及时测试出来启动了服务,运行后发现问题,数据会丢失一部分,难以回滚。
适用场景:
小型网站
大部分游戏
对高可用要求不高的服务
2、平滑扩容
数据库扩容的过程中,如果想要持续对外提供服务,保证服务的可用性,平滑扩容方案是最好的选择。平滑扩容就是将数据库数量扩容成原来的2倍,比如:由2个数据库扩容到4个数据库,具体步骤如下:
新增2个数据库
配置双主进行数据同步(先测试、后上线)
数据同步完成之后,配置双主双写(同步因为有延迟,如果时时刻刻都有写和更新操作,会存在不准确问题)
数据同步完成后,删除双主同步,修改数据库配置,并重启;
此时已经扩容完成,但此时的数据并没有减少,新增的数据库跟旧的数据库一样多的数据,此时还需要写一个程序,清空数据库中多余的数据,如:
User1去除 uid % 4 = 2的数据;
User3去除 uid % 4 = 0的数据;
User2去除 uid % 4 = 3的数据;
User4去除 uid % 4 = 1的数据;
平滑扩容方案能够实现n库扩2n库的平滑扩容,增加数据库服务能力,降低单库一半的数据量。其核心原理是:成倍扩容,避免数据迁移。
优点:
扩容期间,服务正常进行,保证高可用
相对停机扩容,时间长,项目组压力没那么大,出错率低
扩容期间遇到问题,随时解决,不怕影响线上服务
可以将每个数据库数据量减少一半
适用场景:
- 大型网站
- 对高可用要求高的服务
以上就是本文对MySQL分库分表实践总结,前面博主也有分享,链接:分布式数据库MyCat综合实战:https://www.toutiao.com/article/7049340575182651943/
MyCat实现主从复制及分库分表策略详解:https://www.toutiao.com/article/6970231461404328485/
相关推荐
- 【推荐】一款开源免费、美观实用的后台管理系统模版
-
如果您对源码&技术感兴趣,请点赞+收藏+转发+关注,大家的支持是我分享最大的动力!!!项目介绍...
- Android架构组件-App架构指南,你还不收藏嘛
-
本指南适用于那些已经拥有开发Android应用基础知识的开发人员,现在想了解能够开发出更加健壮、优质的应用程序架构。首先需要说明的是:AndroidArchitectureComponents翻...
- 高德地图经纬度坐标批量拾取(高德地图批量查询经纬度)
-
使用方法在桌面上新建一个index.txt文件,把下面的代码复制进去保存,再把文件名改成index.html保存,双击运行打开即可...
- flutter系列之:UI layout简介(flutter ui设计)
-
简介对于一个前端框架来说,除了各个组件之外,最重要的就是将这些组件进行连接的布局了。布局的英文名叫做layout,就是用来描述如何将组件进行摆放的一个约束。...
- Android开发基础入门(一):UI与基础控件
-
Android基础入门前言:...
- iOS的布局体系-流式布局MyFlowLayout
-
iOS布局体系的概览在我的CSDN博客中的几篇文章分别介绍MyLayout布局体系中的视图从一个方向依次排列的线性布局(MyLinearLayout)、视图层叠且停靠于父布局视图某个位置的框架布局(M...
- TDesign企业级开源设计系统越发成熟稳定,支持 Vue3 / 小程序
-
TDesing发展越来越好了,出了好几套组件库,很成熟稳定了,新项目完全可以考虑使用。...
- WinForm实现窗体自适应缩放(winform窗口缩放)
-
众所周知,...
- winform项目——仿QQ即时通讯程序03:搭建登录界面
-
上两篇文章已经对CIM仿QQ即时通讯项目进行了需求分析和数据库设计。winform项目——仿QQ即时通讯程序01:原理及项目分析...
- App自动化测试|原生app元素定位方法
-
元素定位方法介绍及应用Appium方法定位原生app元素...
- 61.C# TableLayoutPanel控件(c# tabcontrol)
-
摘要TableLayoutPanel在网格中排列内容,提供类似于HTML元素的功能。TableLayoutPanel控件允许你将控件放在网格布局中,而无需精确指定每个控件的位置。其单元格...
- 12个python数据处理常用内置函数(python 的内置函数)
-
在python数据分析中,经常需要对字符串进行各种处理,例如拼接字符串、检索字符串等。下面我将对python中常用的内置字符串操作函数进行介绍。1.计算字符串的长度-len()函数str1='我爱py...
- 如何用Python程序将几十个PDF文件合并成一个PDF?其实只要这四步
-
假定你有一个很无聊的任务,需要将几十个PDF文件合并成一个PDF文件。每一个文件都有一个封面作为第一页,但你不希望合并后的文件中重复出现这些封面。即使有许多免费的程序可以合并PDF,很多也只是简单的将...
- Python入门知识点总结,Python三大数据类型、数据结构、控制流
-
Python基础的重要性不言而喻,是每一个入门Python学习者所必备的知识点,作为Python入门,这部分知识点显得很庞杂,内容分支很多,大部分同学在刚刚学习时一头雾水。...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
面试官:git pull是哪两个指令的组合?
-
git pull命令使用实例 git pull--rebase
-
git 执行pull错误如何撤销 git pull fail
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mysql max (33)
- vba instr (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)