数仓|四个在工作后才知道的SQL密技
wptr33 2024-12-23 14:05 28 浏览
SQL是大数据从业者的必备技能,大部分的大数据技术框架也都提供了SQL的解决方案。可以说SQL是一种经久不衰、历久弥新的编程语言。尤其是在数仓领域,使用SQL更是家常便饭。
本文会分享四个在面试和工作中常用的几个使用技巧,具体包括:
- 日期与期间的高级使用
- 临时表与Common Table Expression (WITH)
- Aggregation 与CASE WHEN的结合使用
- Window Function的其他用途
数仓?不就是写写SQL吗…
日期与时间段的筛选在工作中是经常被用到的,因为在拉取报表、仪表板和各种分析时,周、月、季度、年度的表现往往是分析需要考量的重点。
时间区段的提取:Extract
- 语法
-- field可以是day、hour、minute, month, quarter等等
-- source可以是date、timestamp类型
extract(field FROM source)
- 使用
SELECT extract(year FROM '2020-08-05 09:30:08'); -- 结果为 2020
SELECT extract(quarter FROM '2020-08-05 09:30:08'); -- 结果为 3
SELECT extract(month FROM '2020-08-05 09:30:08'); -- 结果为 8
SELECT extract(week FROM '2020-08-05 09:30:08'); -- 结果为 31,一年中的第几周
SELECT extract(day FROM '2020-08-05 09:30:08'); -- 结果为 5
SELECT extract(hour FROM '2020-08-05 09:30:08'); -- 结果为 9
SELECT extract(minute FROM '2020-08-05 09:30:08'); -- 结果为 30
SELECT extract(second FROM '2020-08-05 09:30:08'); -- 结果为 8
注意:
impala支持:YEAR, QUARTER, MONTH, DAY, HOUR, MINUTE, SECOND, MILLISECOND, EPOCH
Hive支持:day, dayofweek, hour, minute, month, quarter, second, week 和 year
Hive是从Hive2.2.0版本开始引入该函数
周的提取
- 语法
在按照周的区间进行统计时,需要识别出周一的日期与周日的日期,这个时候经常会用到下面的函数:
next_day(STRING start_date, STRING day_of_week)
-- 返回当前日期对应的下一个周几对应的日期
-- 2020-08-05为周三
SELECT next_day('2020-08-05','MO') -- 下一个周一对应的日期:2020-08-10
SELECT next_day('2020-08-05','TU') -- 下一个周二对应的日期:2020-08-11
SELECT next_day('2020-08-05','WE') -- 下一个周三对应的日期:2020-08-12
SELECT next_day('2020-08-05','TH') -- 下一个周四对应的日期:2020-08-06,即为本周四
SELECT next_day('2020-08-05','FR') -- 下一个周五对应的日期:2020-08-07,即为本周五
SELECT next_day('2020-08-05','SA') -- 下一个周六对应的日期:2020-08-08,即为本周六
SELECT next_day('2020-08-05','SU') -- 下一个周日对应的日期:2020-08-09,即为本周日
-- 星期一到星期日的英文(Monday,Tuesday、Wednesday、Thursday、Friday、Saturday、Sunday)
- 使用
那么该如何获取当前日期所在周的周一对应的日期呢?只需要先获取当前日期的下周一对应的日期,然后减去7天,即可获得:
SELECT date_add(next_day('2020-08-05','MO'),-7);
同理,获取当前日期所在周的周日对应的日期,只需要先获取当前日期的下周一对应的日期,然后减去1天,即可获得:
select date_add(next_day('2020-08-05','MO'),-1)
-- 2020-08-09
月的提取
- 语法
至于怎么将月份从单一日期提取出来呢,LAST_DAY这个函数可以将每个月中的日期变成该月的最后一天(28号,29号,30号或31号),如下:
last_day(STRING date)
- 使用
SELECT last_day('2020-08-05'); -- 2020-08-31
除了上面的方式,也可以使用date_format函数,比如:
SELECT date_format('2020-08-05','yyyy-MM');
-- 2020-08
日期的范围
月的Window:使用add_months加上trunc()的应用
-- 返回加减月份之后对应的日期
-- 2020-07-05
select add_months('2020-08-05', -1)
-- 返回当前日期的月初日期
-- 2020-08-01
select trunc("2020-08-05",'MM')
由上面范例可见,单纯使用add_months,减N个月的用法,可以刚好取到整数月的数据,但如果加上trunc()函数,则会从前N个月的一号开始取值。
-- 选取2020-07-05到2020-08-05所有数据
BETWEEN add_months('2020-08-05', -1) AND '2020-08-05'
-- 选取2020-07-01到2020-08-05之间所有数据
BETWEEN add_months(trunc("2020-08-05",'MM'),-1) AND '2020-08-05'
这两种方法是日常工作中经常被使用到,对于一些比较复杂的计算任务,为了避免过多的JOIN,通常会先把一些需要提取的部分数据使用临时表或是CTE的形式在主要查询区块前进行提取。
临时表的作法:
CREATE TEMPORARY TABLE table_1 AS
SELECT
columns
FROM table A;
CREATE TEMPORARY table_2 AS
SELECT
columns
FROM table B;
SELECT
table_1.columns,
table_2.columns,
c.columns
FROM table C JOIN table_1
JOIN table_2;
CTE的作法:
-- 注意Hive、Impala支持这种语法,低版本的MySQL不支持(高版本支持)
WITH employee_by_title_count AS (
SELECT
t.name as job_title
, COUNT(e.id) as amount_of_employees
FROM employees e
JOIN job_titles t on e.job_title_id = t.id
GROUP BY 1
),
salaries_by_title AS (
SELECT
name as job_title
, salary
FROM job_titles
)
SELECT *
FROM employee_by_title_count e
JOIN salaries_by_title s ON s.job_title = e.job_title
可以看到TEMP TABLE和CTE WITH的用法其实非常类似,目的都是为了让你的Query更加一目了然且优雅简洁。很多人习惯将所有的Query写在单一的区块里面,用过多的JOIN或SUBQUERY,导致最后逻辑丢失且自己也搞不清楚写到哪里,适时的使用TEMP TABLE和CTE作为辅助,绝对是很加分的。
将Aggregation function (SUM/COUNT/COUNT DISTINCT/MIN/MAX) 结合CASE WHEN是最强大且最有趣的使用方式。这样的使用创造出一种类似EXCEL中SUMIF/COUNTIF的效果,可以用这个方式做出很多高效的分析。
- Table Name: order
- Column: register_date, order_date, user_id, country, order_sales, order_id
数据准备
CREATE TABLE order(
register_date string,
order_date string,
user_id string,
country string,
order_sales decimal(10,2),
order_id string);
INSERT INTO TABLE order VALUES("2020-06-07","2020-06-09","001",'c0',210,"o1");
INSERT INTO TABLE order VALUES("2020-06-08","2020-06-09","002",'c1',220,"o2");
INSERT INTO TABLE order VALUES("2020-06-07","2020-06-10","003",'c2',230,"o3");
INSERT INTO TABLE order VALUES("2020-06-09","2020-06-10","004",'c3',200,"o4");
INSERT INTO TABLE order VALUES("2020-06-07","2020-06-20","005",'c4',300,"o5");
INSERT INTO TABLE order VALUES("2020-06-10","2020-06-23","006",'c5',400,"o6");
INSERT INTO TABLE order VALUES("2020-06-07","2020-06-19","007",'c6',600,"o7");
INSERT INTO TABLE order VALUES("2020-06-12","2020-06-18","008",'c7',700,"o8");
INSERT INTO TABLE order VALUES("2020-06-07","2020-06-09","009",'c8',100,"o9");
INSERT INTO TABLE order VALUES("2020-06-15","2020-06-18","0010",'c9',200,"o10");
INSERT INTO TABLE order VALUES("2020-06-15","2020-06-19","0011",'c10',250,"o11");
INSERT INTO TABLE order VALUES("2020-06-12","2020-06-29","0012",'c11',270,"o12");
INSERT INTO TABLE order VALUES("2020-06-16","2020-06-19","0013",'c12',230,"o13");
INSERT INTO TABLE order VALUES("2020-06-17","2020-06-20","0014",'c13',290,"o14");
INSERT INTO TABLE order VALUES("2020-06-20","2020-06-29","0015",'c14',203,"o15");
CASE WHEN 时间,进行留存率/使用率的分析
-- 允许多列去重
set hive.groupby.skewindata = false
-- 允许使用位置编号分组或排序
set hive.groupby.orderby.position.alias = true
SELECT
date_add(Next_day(register_date, 'MO'),-1) AS week_end,
COUNT(DISTINCT CASE WHEN order_date BETWEEN register_date AND date_add(register_date,6) THEN user_id END) AS first_week_order,
COUNT(DISTINCT CASE WHEN order_date BETWEEN date_add(register_date ,7) AND date_add(register_date,13) THEN user_id END) AS sencod_week_order,
COUNT(DISTINCT CASE WHEN order_date BETWEEN date_add(register_date ,14) AND date_add(register_date,20) THEN user_id END) as third_week_order
FROM order
GROUP BY 1
上面的示例可以得知到用户在注册之后,有没有创建订单的行为。比如注册后的第一周,第二周,第三周分别有多少下单用户,这样可以分析出用户的使用情况和留存情况。
注意:上面的使用方式,需要配置两个参数:
hive.groupby.skewindata = false:允许多列去重,否则报错:
SemanticException [Error 10022]: DISTINCT on different columns not supported with skew in data
hive.groupby.orderby.position.alias = true:允许使用位置编号分组或排序,否则报错:
SemanticException [Error 10025]: line 79:13 Expression not in GROUP BY key ''MO''
CASE WHEN 时间,进行每个用户消费金额的分析
SELECT
user_id,
SUM (CASE WHEN order_date BETWEEN register_date AND date_add(register_date,6) THEN order_sales END) AS first_week_amount,
SUM (CASE WHEN order_date BETWEEN date_add(register_date ,7) AND date_add(register_date,13) THEN order_sales END) AS second_week_amount
FROM order
GROUP BY 1
通过筛选出注册与消费的日期,并且进行消费金额统计,每个用户在每段时间段(注册后第一周、第二周…以此类推)的消费金额,可以观察用户是否有持续维持消费习惯或是消费金额变低等分析。
CASE WHEN数量,消费金额超过某一定额的数量分析
SELECT
user_id,
COUNT(DISTINCT CASE WHEN order_sales >= 100 THEN order_id END) AS count_of_order_greateer_than_100
FROM order
GROUP BY 1
上面的示例就是类似countif的用法,针对每个用户,统计其订单金额大于某个值的订单数量,分析去筛选出高价值的顾客。
CASE WHEN数量,加上时间的用法
SELECT
user_id,
MIN(CASE WHEN order_sales > 100 THEN order_date END) AS first_order_date_over1000,
MAX(CASE WHEN order_sales > 100 THEN order_date END) AS recent_order_date_over100
FROM order
GROUP BY 1
CASE WHEN加上MIN/MAX时间,可以得出该用户在其整个使用过程中,首次购买超过一定金额的订单日期,以及最近一次购买超过一定金额的订单日期。
Window Function既是工作中经常使用的函数,也是面试时经常被问到的问题。常见的使用场景是分组取topN。本文介绍的另外一个用法,使用开窗函数进行用户访问session分析。
session是指在指定的时间段内用户在网站上发生的一系列互动。例如,一次session可以包含多个网页浏览、事件、社交互动和电子商务交易。session就相当于一个容器,其中包含了用户在网站上执行的操作。
session具有一个过期时间,比如30分钟,即不活动状态超过 30 分钟,该session就会过时。
假设张三访问了网站,从他到达网站的那一刻开始,就开始计时。如果过了 30 分钟,而张三仍然没有进行任何形式的互动,则视为本次session结束。但是,只要张三与某个元素进行了互动(例如发生了某个事件、社交互动或打开了新网页),就会在该次互动的时间基础上再增加 30 分钟,从而重置过期时间。
数据准备
- Table Name: user_visit_action
- Columns: user_id, session_id , page_url, action_time
CREATE TABLE user_visit_action(
user_id string,
session_id string,
page_url string,
action_time string);
INSERT INTO TABLE user_visit_action VALUES("001","ss001","http://a.com","2020-08-06 13:34:11.478");
INSERT INTO TABLE user_visit_action VALUES("001","ss001","http://b.com","2020-08-06 13:35:11.478");
INSERT INTO TABLE user_visit_action VALUES("001","ss001","http://c.com","2020-08-06 13:36:11.478");
INSERT INTO TABLE user_visit_action VALUES("001","ss002","http://a.com","2020-08-06 14:30:11.478");
INSERT INTO TABLE user_visit_action VALUES("001","ss002","http://b.com","2020-08-06 14:31:11.478");
INSERT INTO TABLE user_visit_action VALUES("001","ss002","http://e.com","2020-08-06 14:33:11.478");
INSERT INTO TABLE user_visit_action VALUES("001","ss002","http://f.com","2020-08-06 14:35:11.478");
INSERT INTO TABLE user_visit_action VALUES("002","ss003","http://u.com","2020-08-06 18:34:11.478");
INSERT INTO TABLE user_visit_action VALUES("002","ss003","http://k.com","2020-08-06 18:38:11.478");
用户访问session分析
范例的资料表如上,有使用者、访次和页面的连接和时间。以下则使用partition by来表达每个使用者在不同访次之间的浏览行为。
SELECT
user_id,
session_id,
page_url,
DENSE_RANK() OVER (PARTITION BY user_id, session_id ORDER BY action_time ASC) AS page_order,
MIN(action_time) OVER (PARTITION BY user_id, session_id) AS session_start_time,
MAX(action_time) OVER (PARTITION BY user_id, session_id) AS session_finisht_time
FROM user_visit_action
上面的查询会返回针对每个用户、每次的到访,浏览页面行为的先后次序,以及该session开始与结束的时间,以此为基础就可以将这个结果存入TEMP TABLE或是CTE ,进行更进一步的分析。
小结
本文主要分享了四个在工作和面试中经常遇到的SQL使用技巧。当然,这些都与具体的分析业务息息相关。最后,不管你是SQL boy or SQL girl,只要是掌握一些技巧,相信都能够Happy SQL querying 。
相关推荐
- redis的八种使用场景
-
前言:redis是我们工作开发中,经常要打交道的,下面对redis的使用场景做总结介绍也是对redis举报的功能做梳理。缓存Redis最常见的用途是作为缓存,用于加速应用程序的响应速度。...
- 基于Redis的3种分布式ID生成策略
-
在分布式系统设计中,全局唯一ID是一个基础而关键的组件。随着业务规模扩大和系统架构向微服务演进,传统的单机自增ID已无法满足需求。高并发、高可用的分布式ID生成方案成为构建可靠分布式系统的必要条件。R...
- 基于OpenWrt系统路由器的模式切换与网页设计
-
摘要:目前商用WiFi路由器已应用到多个领域,商家通过给用户提供一个稳定免费WiFi热点达到吸引客户、提升服务的目标。传统路由器自带的Luci界面提供了工厂模式的Web界面,用户可通过该界面配置路...
- 这篇文章教你看明白 nginx-ingress 控制器
-
主机nginx一般nginx做主机反向代理(网关)有以下配置...
- 如何用redis实现注册中心
-
一句话总结使用Redis实现注册中心:服务注册...
- 爱可可老师24小时热门分享(2020.5.10)
-
No1.看自己以前写的代码是种什么体验?No2.DooM-chip!国外网友SylvainLefebvre自制的无CPU、无操作码、无指令计数器...No3.我认为CS学位可以更好,如...
- Apportable:拯救程序员,IOS一秒变安卓
-
摘要:还在为了跨平台使用cocos2d-x吗,拯救objc程序员的奇葩来了,ApportableSDK:FreeAndroidsupportforcocos2d-iPhone。App...
- JAVA实现超买超卖方案汇总,那个最适合你,一篇文章彻底讲透
-
以下是几种Java实现超买超卖问题的核心解决方案及代码示例,针对高并发场景下的库存扣减问题:方案一:Redis原子操作+Lua脚本(推荐)//使用Redis+Lua保证原子性publicbo...
- 3月26日更新 快速施法自动施法可独立设置
-
2016年3月26日DOTA2有一个79.6MB的更新主要是针对自动施法和快速施法的调整本来内容不多不少朋友都有自动施法和快速施法的困扰英文更新日志一些视觉BUG修复就不翻译了主要翻译自动施...
- Redis 是如何提供服务的
-
在刚刚接触Redis的时候,最想要知道的是一个’setnameJhon’命令到达Redis服务器的时候,它是如何返回’OK’的?里面命令处理的流程如何,具体细节怎么样?你一定有问过自己...
- lua _G、_VERSION使用
-
到这里我们已经把lua基础库中的函数介绍完了,除了函数外基础库中还有两个常量,一个是_G,另一个是_VERSION。_G是基础库本身,指向自己,这个变量很有意思,可以无限引用自己,最后得到的还是自己,...
- China's top diplomat to chair third China-Pacific Island countries foreign ministers' meeting
-
BEIJING,May21(Xinhua)--ChineseForeignMinisterWangYi,alsoamemberofthePoliticalBureau...
- 移动工作交流工具Lua推出Insights数据分析产品
-
Lua是一个适用于各种职业人士的移动交流平台,它在今天推出了一项叫做Insights的全新功能。Insights是一个数据平台,客户可以在上面实时看到员工之间的交流情况,并分析这些情况对公司发展的影响...
- Redis 7新武器:用Redis Stack实现向量搜索的极限压测
-
当传统关系型数据库还在为向量相似度搜索的性能挣扎时,Redis7的RedisStack...
- Nginx/OpenResty详解,Nginx Lua编程,重定向与内部子请求
-
重定向与内部子请求Nginx的rewrite指令不仅可以在Nginx内部的server、location之间进行跳转,还可以进行外部链接的重定向。通过ngx_lua模块的Lua函数除了能实现Nginx...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
面试官:git pull是哪两个指令的组合?
-
git 执行pull错误如何撤销 git pull fail
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)