解决磁盘IO读取慢全过程
wptr33 2024-12-10 21:20 28 浏览
在两台型号相同的机器上(snap1 和snap3)测试磁盘的读取速度,发现两台机器的读取速度差的很大:
#dd if=/dev/dm-93 of=/dev/null bs=4M count=1024
711MB/s on snap1.
178MB/s on snap3.
接下来比较snap1和snap3两台机器上关于dm-93磁盘(raid)的以下字段输出都是一样
/sys/block/<device>/queue/max_sectors_kb
/sys/block/<device>/queue/nomerges
/sys/block/<device>/queue/rq_affinity
/sys/block/<device>/queue/scheduler
字段解释可以参考:
https://www.kernel.org/doc/Documentation/block/queue-sysfs.txt
然后用blktrace监控一下磁盘IO处理过程:
#blktrace /dev/dm-93
使用blkparse查看blktrace收集的日志:
253,108 1 1 7.263881407 21072 Q R 128 + 128 [dd]
在snap3上请求读取一页(64k每页)
253,108 1 2 7.263883907 21072 G R 128 + 128 [dd]
253,108 1 3 7.263885017 21072 I R 128 + 128 [dd]
253,108 1 4 7.263886077 21072 D R 128 + 128 [dd]
提交IO到磁盘
253,108 0 1 7.264883548 3 C R 128 + 128 [0]
大约1ms之后IO处理完成
253,108 1 5 7.264907601 21072 Q R 256 + 128 [dd]
磁盘处理IO完成之后,dd才开始处理下一个IO
253,108 1 6 7.264908587 21072 G R 256 + 128 [dd]
253,108 1 7 7.264908937 21072 I R 256 + 128 [dd]
253,108 1 8 7.264909470 21072 D R 256 + 128 [dd]
253,108 0 2 7.265757903 3 C R 256 + 128 [0]
但是在snap1上则完全不同,上一个IO没有完成的情况下,dd紧接着处理下一个IO
253,108 17 1 5.020623706 23837 Q R 128 + 128 [dd]
253,108 17 2 5.020625075 23837 G R 128 + 128 [dd]
253,108 17 3 5.020625309 23837 P N [dd]
253,108 17 4 5.020626991 23837 Q R 256 + 128 [dd]
253,108 17 5 5.020627454 23837 M R 256 + 128 [dd]
253,108 17 6 5.020628526 23837 Q R 384 + 128 [dd]
253,108 17 7 5.020628704 23837 M R 384 + 128 [dd]
现在怀疑是snap3上读取磁盘数据时没有预读,但是检查两台机器上read_ahead_kb的值都是一样的,都是512.
#/sys/block/<device>/queue/read_ahead_kb
512
没办法了,发绝招:用kprobe探测一下相关函数参数:
#ra_trace.sh
#!/bin/bash
if [ "$#" != 1 ]; then
echo "Usage: ra_trace.sh <device>"
exit
fi
echo 'p:do_readahead __do_page_cache_readahead mapping=%di offset=%dx pages=%cx' >/sys/kernel/debug/tracing/kprobe_events
echo 'p:submit_ra ra_submit mapping=%si ra=%di rastart=+0(%di) rasize=+8(%di):u32 rapages=+16(%di):u32' >>/sys/kernel/debug/tracing/kprobe_events
echo 'p:sync_ra page_cache_sync_readahead mapping=%di ra=%si rastart=+0(%si) rasize=+8(%si):u32 rapages=+16(%si):u32' >>/sys/kernel/debug/tracing/kprobe_events
echo 'p:async_ra page_cache_async_readahead mapping=%di ra=%si rastart=+0(%si) rasize=+8(%si):u32 rapages=+16(%si):u32' >>/sys/kernel/debug/tracing/kprobe_events
echo 1 >/sys/kernel/debug/tracing/events/kprobes/enable
dd if=$1 of=/dev/null bs=4M count=1024
echo 0 >/sys/kernel/debug/tracing/events/kprobes/enable
cat /sys/kernel/debug/tracing/trace_pipe&
CATPID=$!
sleep 3
kill $CATPID
发现在snap3上预读磁盘的时候,rasize=0,确实在读数据时没有预读数据。
<...>-35748 [009] 2507549.022375: submit_ra: (.ra_submit+0x0/0x38) mapping=c0000001bbd17728 ra=c000000191a261f0 rastart=df0b rasize=0 rapages=8
<...>-35748 [009] 2507549.022376: do_readahead: (.__do_page_cache_readahead+0x0/0x208) mapping=c0000001bbd17728 offset=df0b pages=0
<...>-35748 [009] 2507549.022694: sync_ra: (.page_cache_sync_readahead+0x0/0x50) mapping=c0000001bbd17728 ra=c000000191a261f0 rastart=df0b rasize=0 rapages=8
<...>-35748 [009] 2507549.022695: submit_ra: (.ra_submit+0x0/0x38) mapping=c0000001bbd17728 ra=c000000191a261f0 rastart=df0c rasize=0 rapages=8
接下来仔细研读一下预读相关的代码,发现预读页与node上的内存相关:
unsigned long max_sane_readahead(unsigned long nr)
{
return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
}
比较一下snap1与snap3上node上的内存情况,发现snap3上node0上的内存和空闲内存都为0 ( 根因找到 :-)
snap1:
# /usr/bin/numactl --hardware
available: 1 nodes (0)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
node 0 size: 8192 MB
node 0 free: 529 MB
node distances:
node 0
0: 10
snap3:
# /usr/bin/numactl --hardware
available: 2 nodes (0,2)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
node 0 size: 0 MB
node 0 free: 0 MB
node 2 cpus:
node 2 size: 8192 MB
node 2 free: 888 MB
node distances:
node 0 2
0: 10 40
2: 40 10
发现内核中有两个patch解决了这个问题,IO的预读不再以当前cpu上node上的内存情况来判断:
commit:6d2be915e589
mm/readahead.c: fix readahead failure for memoryless NUMA nodes and limit readahead pages
+#define MAX_READAHEAD ((512*4096)/PAGE_CACHE_SIZE)
/*
* Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
* sensible upper limit.
*/
unsigned long max_sane_readahead(unsigned long nr)
{
- return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
- + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
+ return min(nr, MAX_READAHEAD);
}
commit:600e19afc5f8
mm: use only per-device readahead limit
Note: 以上内核代码基于Linux内核主线代码 Linux3.0
- 上一篇:linux主机安全记录配置
- 下一篇:shell脚本实现传参(参数不限)
相关推荐
- redis的八种使用场景
-
前言:redis是我们工作开发中,经常要打交道的,下面对redis的使用场景做总结介绍也是对redis举报的功能做梳理。缓存Redis最常见的用途是作为缓存,用于加速应用程序的响应速度。...
- 基于Redis的3种分布式ID生成策略
-
在分布式系统设计中,全局唯一ID是一个基础而关键的组件。随着业务规模扩大和系统架构向微服务演进,传统的单机自增ID已无法满足需求。高并发、高可用的分布式ID生成方案成为构建可靠分布式系统的必要条件。R...
- 基于OpenWrt系统路由器的模式切换与网页设计
-
摘要:目前商用WiFi路由器已应用到多个领域,商家通过给用户提供一个稳定免费WiFi热点达到吸引客户、提升服务的目标。传统路由器自带的Luci界面提供了工厂模式的Web界面,用户可通过该界面配置路...
- 这篇文章教你看明白 nginx-ingress 控制器
-
主机nginx一般nginx做主机反向代理(网关)有以下配置...
- 如何用redis实现注册中心
-
一句话总结使用Redis实现注册中心:服务注册...
- 爱可可老师24小时热门分享(2020.5.10)
-
No1.看自己以前写的代码是种什么体验?No2.DooM-chip!国外网友SylvainLefebvre自制的无CPU、无操作码、无指令计数器...No3.我认为CS学位可以更好,如...
- Apportable:拯救程序员,IOS一秒变安卓
-
摘要:还在为了跨平台使用cocos2d-x吗,拯救objc程序员的奇葩来了,ApportableSDK:FreeAndroidsupportforcocos2d-iPhone。App...
- JAVA实现超买超卖方案汇总,那个最适合你,一篇文章彻底讲透
-
以下是几种Java实现超买超卖问题的核心解决方案及代码示例,针对高并发场景下的库存扣减问题:方案一:Redis原子操作+Lua脚本(推荐)//使用Redis+Lua保证原子性publicbo...
- 3月26日更新 快速施法自动施法可独立设置
-
2016年3月26日DOTA2有一个79.6MB的更新主要是针对自动施法和快速施法的调整本来内容不多不少朋友都有自动施法和快速施法的困扰英文更新日志一些视觉BUG修复就不翻译了主要翻译自动施...
- Redis 是如何提供服务的
-
在刚刚接触Redis的时候,最想要知道的是一个’setnameJhon’命令到达Redis服务器的时候,它是如何返回’OK’的?里面命令处理的流程如何,具体细节怎么样?你一定有问过自己...
- lua _G、_VERSION使用
-
到这里我们已经把lua基础库中的函数介绍完了,除了函数外基础库中还有两个常量,一个是_G,另一个是_VERSION。_G是基础库本身,指向自己,这个变量很有意思,可以无限引用自己,最后得到的还是自己,...
- China's top diplomat to chair third China-Pacific Island countries foreign ministers' meeting
-
BEIJING,May21(Xinhua)--ChineseForeignMinisterWangYi,alsoamemberofthePoliticalBureau...
- 移动工作交流工具Lua推出Insights数据分析产品
-
Lua是一个适用于各种职业人士的移动交流平台,它在今天推出了一项叫做Insights的全新功能。Insights是一个数据平台,客户可以在上面实时看到员工之间的交流情况,并分析这些情况对公司发展的影响...
- Redis 7新武器:用Redis Stack实现向量搜索的极限压测
-
当传统关系型数据库还在为向量相似度搜索的性能挣扎时,Redis7的RedisStack...
- Nginx/OpenResty详解,Nginx Lua编程,重定向与内部子请求
-
重定向与内部子请求Nginx的rewrite指令不仅可以在Nginx内部的server、location之间进行跳转,还可以进行外部链接的重定向。通过ngx_lua模块的Lua函数除了能实现Nginx...
- 一周热门
-
-
C# 13 和 .NET 9 全知道 :13 使用 ASP.NET Core 构建网站 (1)
-
因果推断Matching方式实现代码 因果推断模型
-
git pull命令使用实例 git pull--rebase
-
git pull 和git fetch 命令分别有什么作用?二者有什么区别?
-
面试官:git pull是哪两个指令的组合?
-
git 执行pull错误如何撤销 git pull fail
-
git fetch 和git pull 的异同 git中fetch和pull的区别
-
git pull 之后本地代码被覆盖 解决方案
-
还可以这样玩?Git基本原理及各种骚操作,涨知识了
-
git命令之pull git.pull
-
- 最近发表
- 标签列表
-
- git pull (33)
- git fetch (35)
- mysql insert (35)
- mysql distinct (37)
- concat_ws (36)
- java continue (36)
- jenkins官网 (37)
- mysql 子查询 (37)
- python元组 (33)
- mybatis 分页 (35)
- vba split (37)
- redis watch (34)
- python list sort (37)
- nvarchar2 (34)
- mysql not null (36)
- hmset (35)
- python telnet (35)
- python readlines() 方法 (36)
- munmap (35)
- docker network create (35)
- redis 集合 (37)
- python sftp (37)
- setpriority (34)
- c语言 switch (34)
- git commit (34)